Steering Control and Automatic Tuning to Compensate for Road Cant View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Toshiyuki Sugimachi, Takanori Fukao, Takuma Ario, Yoshihiro Suda

ABSTRACT

Japan’s New Energy and Industrial Technology Development Organization (NEDO) initiated the “Energy ITS” project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the “Steering Control and Automatic Tuning to Compensate for Road Cant” project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided. More... »

PAGES

142-149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8

DOI

http://dx.doi.org/10.1007/s13177-018-0164-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107046660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo City University", 
          "id": "https://www.grid.ac/institutes/grid.458395.6", 
          "name": [
            "Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-Ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugimachi", 
        "givenName": "Toshiyuki", 
        "id": "sg:person.011364470321.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364470321.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukao", 
        "givenName": "Takanori", 
        "id": "sg:person.015447560323.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447560323.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ario", 
        "givenName": "Takuma", 
        "id": "sg:person.07507354771.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507354771.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suda", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.013172410247.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172410247.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/itsc.2010.5625215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093736886"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Japan\u2019s New Energy and Industrial Technology Development Organization (NEDO) initiated the \u201cEnergy ITS\u201d project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the \u201cSteering Control and Automatic Tuning to Compensate for Road Cant\u201d project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13177-018-0164-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136714", 
        "issn": [
          "1348-8503", 
          "1868-8659"
        ], 
        "name": "International Journal of Intelligent Transportation Systems Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Steering Control and Automatic Tuning to Compensate for Road Cant", 
    "pagination": "142-149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3f9463beb480b3d8b81942d2ad08e3a697c962ffd5bbc36b2bd172e5e24f35b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13177-018-0164-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107046660"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13177-018-0164-8", 
      "https://app.dimensions.ai/details/publication/pub.1107046660"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13177-018-0164-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13177-018-0164-8 schema:about anzsrc-for:09
2 anzsrc-for:0913
3 schema:author Na9bb2998d70c4ad7b2461ce571afcaf3
4 schema:citation https://doi.org/10.1109/itsc.2010.5625215
5 schema:datePublished 2019-05
6 schema:datePublishedReg 2019-05-01
7 schema:description Japan’s New Energy and Industrial Technology Development Organization (NEDO) initiated the “Energy ITS” project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the “Steering Control and Automatic Tuning to Compensate for Road Cant” project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0b3c9787132a484d809cfbf8b05a3ddb
12 N6837465fae684ec4b9172d707e4e981b
13 sg:journal.1136714
14 schema:name Steering Control and Automatic Tuning to Compensate for Road Cant
15 schema:pagination 142-149
16 schema:productId N2204c1a3acc345b69313dea760c154df
17 N250e05f45ef44ed1a73867eb8b73fa58
18 N3b3023e1771449d498f7bbe7788221ef
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107046660
20 https://doi.org/10.1007/s13177-018-0164-8
21 schema:sdDatePublished 2019-04-11T13:57
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nb45b5c5d334e43ceac949ec80662e7f1
24 schema:url https://link.springer.com/10.1007%2Fs13177-018-0164-8
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N0b3c9787132a484d809cfbf8b05a3ddb schema:volumeNumber 17
29 rdf:type schema:PublicationVolume
30 N107f362d8f5a45dab3edb83466c53526 rdf:first sg:person.07507354771.61
31 rdf:rest N5095bcbfa6bf4fdcbf7cc4e5b3ff7a9c
32 N2204c1a3acc345b69313dea760c154df schema:name readcube_id
33 schema:value f3f9463beb480b3d8b81942d2ad08e3a697c962ffd5bbc36b2bd172e5e24f35b
34 rdf:type schema:PropertyValue
35 N250e05f45ef44ed1a73867eb8b73fa58 schema:name doi
36 schema:value 10.1007/s13177-018-0164-8
37 rdf:type schema:PropertyValue
38 N3b3023e1771449d498f7bbe7788221ef schema:name dimensions_id
39 schema:value pub.1107046660
40 rdf:type schema:PropertyValue
41 N5095bcbfa6bf4fdcbf7cc4e5b3ff7a9c rdf:first sg:person.013172410247.38
42 rdf:rest rdf:nil
43 N6837465fae684ec4b9172d707e4e981b schema:issueNumber 2
44 rdf:type schema:PublicationIssue
45 Na9bb2998d70c4ad7b2461ce571afcaf3 rdf:first sg:person.011364470321.54
46 rdf:rest Nc212697b4e09443eb68888c70f86ac3e
47 Nb45b5c5d334e43ceac949ec80662e7f1 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nc212697b4e09443eb68888c70f86ac3e rdf:first sg:person.015447560323.70
50 rdf:rest N107f362d8f5a45dab3edb83466c53526
51 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
52 schema:name Engineering
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mechanical Engineering
56 rdf:type schema:DefinedTerm
57 sg:journal.1136714 schema:issn 1348-8503
58 1868-8659
59 schema:name International Journal of Intelligent Transportation Systems Research
60 rdf:type schema:Periodical
61 sg:person.011364470321.54 schema:affiliation https://www.grid.ac/institutes/grid.458395.6
62 schema:familyName Sugimachi
63 schema:givenName Toshiyuki
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364470321.54
65 rdf:type schema:Person
66 sg:person.013172410247.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
67 schema:familyName Suda
68 schema:givenName Yoshihiro
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172410247.38
70 rdf:type schema:Person
71 sg:person.015447560323.70 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
72 schema:familyName Fukao
73 schema:givenName Takanori
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447560323.70
75 rdf:type schema:Person
76 sg:person.07507354771.61 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
77 schema:familyName Ario
78 schema:givenName Takuma
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507354771.61
80 rdf:type schema:Person
81 https://doi.org/10.1109/itsc.2010.5625215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093736886
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.262576.2 schema:alternateName Ritsumeikan University
84 schema:name Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, Japan
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
87 schema:name The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.31432.37 schema:alternateName Kobe University
90 schema:name Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, Japan
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.458395.6 schema:alternateName Tokyo City University
93 schema:name Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-Ku, Tokyo, Japan
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...