Steering Control and Automatic Tuning to Compensate for Road Cant View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Toshiyuki Sugimachi, Takanori Fukao, Takuma Ario, Yoshihiro Suda

ABSTRACT

Japan’s New Energy and Industrial Technology Development Organization (NEDO) initiated the “Energy ITS” project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the “Steering Control and Automatic Tuning to Compensate for Road Cant” project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided. More... »

PAGES

142-149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8

DOI

http://dx.doi.org/10.1007/s13177-018-0164-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107046660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo City University", 
          "id": "https://www.grid.ac/institutes/grid.458395.6", 
          "name": [
            "Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-Ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugimachi", 
        "givenName": "Toshiyuki", 
        "id": "sg:person.011364470321.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364470321.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukao", 
        "givenName": "Takanori", 
        "id": "sg:person.015447560323.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447560323.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kobe University", 
          "id": "https://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ario", 
        "givenName": "Takuma", 
        "id": "sg:person.07507354771.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507354771.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suda", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.013172410247.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172410247.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/itsc.2010.5625215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093736886"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Japan\u2019s New Energy and Industrial Technology Development Organization (NEDO) initiated the \u201cEnergy ITS\u201d project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the \u201cSteering Control and Automatic Tuning to Compensate for Road Cant\u201d project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13177-018-0164-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136714", 
        "issn": [
          "1348-8503", 
          "1868-8659"
        ], 
        "name": "International Journal of Intelligent Transportation Systems Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Steering Control and Automatic Tuning to Compensate for Road Cant", 
    "pagination": "142-149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3f9463beb480b3d8b81942d2ad08e3a697c962ffd5bbc36b2bd172e5e24f35b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13177-018-0164-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107046660"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13177-018-0164-8", 
      "https://app.dimensions.ai/details/publication/pub.1107046660"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13177-018-0164-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13177-018-0164-8'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13177-018-0164-8 schema:about anzsrc-for:09
2 anzsrc-for:0913
3 schema:author N22e8d1910d2847e388f3a69b799859d6
4 schema:citation https://doi.org/10.1109/itsc.2010.5625215
5 schema:datePublished 2019-05
6 schema:datePublishedReg 2019-05-01
7 schema:description Japan’s New Energy and Industrial Technology Development Organization (NEDO) initiated the “Energy ITS” project in 2008, to evaluate methods of reducing CO2 emissions using Intelligent Transportation System (ITS) applications. The goal of the “Steering Control and Automatic Tuning to Compensate for Road Cant” project is to develop techniques for autonomous platooning of heavy-duty trucks to reduce their air resistance in expressway driving, thereby reducing fuel consumption and CO2 emissions. This study describes a steering control method based on path following, which uses feedforward control to respond to road cant. The output of the feedforward controller is used to maintain lateral control of the vehicle, turning the steering wheel to keep the vehicle within specified offsets of the ideal path. Experimental results that demonstrate the effectiveness of this approach are provided.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N28e260e2cfe94b56bd6adeadac8082c2
12 Nef12b074948c46fc94addc0ca0c13527
13 sg:journal.1136714
14 schema:name Steering Control and Automatic Tuning to Compensate for Road Cant
15 schema:pagination 142-149
16 schema:productId Ncb5128aab62e45eb9c91260b1e8f8837
17 Nf3f90da06e224f5c8b27b7ea3d140143
18 Nff5c5f9b0f264f5e898eb0b0777f25cc
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107046660
20 https://doi.org/10.1007/s13177-018-0164-8
21 schema:sdDatePublished 2019-04-11T13:57
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ncc70f37e96b044d0b3c9564fedef1138
24 schema:url https://link.springer.com/10.1007%2Fs13177-018-0164-8
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N08ee1777b4d6472d95c71d25d31c8917 rdf:first sg:person.015447560323.70
29 rdf:rest N87069f6e10cd4b47aaa32f6d54def929
30 N1d9fb397c17f4640868c3fe7c2cce760 rdf:first sg:person.013172410247.38
31 rdf:rest rdf:nil
32 N22e8d1910d2847e388f3a69b799859d6 rdf:first sg:person.011364470321.54
33 rdf:rest N08ee1777b4d6472d95c71d25d31c8917
34 N28e260e2cfe94b56bd6adeadac8082c2 schema:issueNumber 2
35 rdf:type schema:PublicationIssue
36 N87069f6e10cd4b47aaa32f6d54def929 rdf:first sg:person.07507354771.61
37 rdf:rest N1d9fb397c17f4640868c3fe7c2cce760
38 Ncb5128aab62e45eb9c91260b1e8f8837 schema:name readcube_id
39 schema:value f3f9463beb480b3d8b81942d2ad08e3a697c962ffd5bbc36b2bd172e5e24f35b
40 rdf:type schema:PropertyValue
41 Ncc70f37e96b044d0b3c9564fedef1138 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nef12b074948c46fc94addc0ca0c13527 schema:volumeNumber 17
44 rdf:type schema:PublicationVolume
45 Nf3f90da06e224f5c8b27b7ea3d140143 schema:name doi
46 schema:value 10.1007/s13177-018-0164-8
47 rdf:type schema:PropertyValue
48 Nff5c5f9b0f264f5e898eb0b0777f25cc schema:name dimensions_id
49 schema:value pub.1107046660
50 rdf:type schema:PropertyValue
51 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
52 schema:name Engineering
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mechanical Engineering
56 rdf:type schema:DefinedTerm
57 sg:journal.1136714 schema:issn 1348-8503
58 1868-8659
59 schema:name International Journal of Intelligent Transportation Systems Research
60 rdf:type schema:Periodical
61 sg:person.011364470321.54 schema:affiliation https://www.grid.ac/institutes/grid.458395.6
62 schema:familyName Sugimachi
63 schema:givenName Toshiyuki
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364470321.54
65 rdf:type schema:Person
66 sg:person.013172410247.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
67 schema:familyName Suda
68 schema:givenName Yoshihiro
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172410247.38
70 rdf:type schema:Person
71 sg:person.015447560323.70 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
72 schema:familyName Fukao
73 schema:givenName Takanori
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447560323.70
75 rdf:type schema:Person
76 sg:person.07507354771.61 schema:affiliation https://www.grid.ac/institutes/grid.31432.37
77 schema:familyName Ario
78 schema:givenName Takuma
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07507354771.61
80 rdf:type schema:Person
81 https://doi.org/10.1109/itsc.2010.5625215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093736886
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.262576.2 schema:alternateName Ritsumeikan University
84 schema:name Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, Japan
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
87 schema:name The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.31432.37 schema:alternateName Kobe University
90 schema:name Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, Japan
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.458395.6 schema:alternateName Tokyo City University
93 schema:name Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-Ku, Tokyo, Japan
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...