VANET IR-CAS for Safety ACN: Information Retrieval Context Aware System for VANET Automatic Crash Notification Safety Application View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Lobna Nassar, Mohamed S. Kamel, Fakhri Karray

ABSTRACT

We propose IR-CAS ACN, a fully Automated Crash Notification safety application that enhances accuracy and efficiency with its precise notifications and increased decentralization. It can be considered as an improvement to the BMW Advanced ACN (AACN): It decentralizes the severity calculation by introducing in-vehicle severity estimation. It fully automates the solution and disseminates more informative messages with partial rather than graded relevance that is insensitive to differences in severity within grades. Different IR models are compared using binary and partial effectiveness measures; estimating severity by calculating the Manhattan distance between the crash and severest crash context vectors outperforms tried models. More... »

PAGES

127-138

References to SciGraph publications

  • 2010-06. Evaluating information retrieval system performance based on user preference in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 2015-01. VANET IR-CAS for Commercial SA: Information Retrieval Context Aware System for VANET Commercial Service Announcement in INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13177-014-0108-x

    DOI

    http://dx.doi.org/10.1007/s13177-014-0108-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006223239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Electrical & Computer Engineering, University of Waterloo, 200 University Avenue, N2L 3G1, West Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nassar", 
            "givenName": "Lobna", 
            "id": "sg:person.015365421777.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365421777.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Electrical & Computer Engineering, University of Waterloo, 200 University Avenue, N2L 3G1, West Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Electrical & Computer Engineering, University of Waterloo, 200 University Avenue, N2L 3G1, West Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karray", 
            "givenName": "Fakhri", 
            "id": "sg:person.010544641574.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2386958.2386973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010180854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/508791.508919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018702571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-009-0096-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026438725", 
              "https://doi.org/10.1007/s10844-009-0096-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-009-0096-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026438725", 
              "https://doi.org/10.1007/s10844-009-0096-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13177-014-0078-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033315688", 
              "https://doi.org/10.1007/s13177-014-0078-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmcj.2009.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047005054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijvas.2012.051267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067501249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078651311", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2010.5625104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095691920"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09", 
        "datePublishedReg": "2016-09-01", 
        "description": "We propose IR-CAS ACN, a fully Automated Crash Notification safety application that enhances accuracy and efficiency with its precise notifications and increased decentralization. It can be considered as an improvement to the BMW Advanced ACN (AACN): It decentralizes the severity calculation by introducing in-vehicle severity estimation. It fully automates the solution and disseminates more informative messages with partial rather than graded relevance that is insensitive to differences in severity within grades. Different IR models are compared using binary and partial effectiveness measures; estimating severity by calculating the Manhattan distance between the crash and severest crash context vectors outperforms tried models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13177-014-0108-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136714", 
            "issn": [
              "1348-8503", 
              "1868-8659"
            ], 
            "name": "International Journal of Intelligent Transportation Systems Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "VANET IR-CAS for Safety ACN: Information Retrieval Context Aware System for VANET Automatic Crash Notification Safety Application", 
        "pagination": "127-138", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1da4f61289024735eed3cdc8d53a9b7653305e50d85d5de9b1ab0c897fac501e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13177-014-0108-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006223239"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13177-014-0108-x", 
          "https://app.dimensions.ai/details/publication/pub.1006223239"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13177-014-0108-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13177-014-0108-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13177-014-0108-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13177-014-0108-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13177-014-0108-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13177-014-0108-x schema:about anzsrc-for:11
    2 anzsrc-for:1117
    3 schema:author Na40c4f1c34d247fa87112d4311916450
    4 schema:citation sg:pub.10.1007/s10844-009-0096-5
    5 sg:pub.10.1007/s13177-014-0078-z
    6 https://app.dimensions.ai/details/publication/pub.1078651311
    7 https://doi.org/10.1016/j.pmcj.2009.06.002
    8 https://doi.org/10.1109/itsc.2010.5625104
    9 https://doi.org/10.1145/2386958.2386973
    10 https://doi.org/10.1145/508791.508919
    11 https://doi.org/10.1504/ijvas.2012.051267
    12 schema:datePublished 2016-09
    13 schema:datePublishedReg 2016-09-01
    14 schema:description We propose IR-CAS ACN, a fully Automated Crash Notification safety application that enhances accuracy and efficiency with its precise notifications and increased decentralization. It can be considered as an improvement to the BMW Advanced ACN (AACN): It decentralizes the severity calculation by introducing in-vehicle severity estimation. It fully automates the solution and disseminates more informative messages with partial rather than graded relevance that is insensitive to differences in severity within grades. Different IR models are compared using binary and partial effectiveness measures; estimating severity by calculating the Manhattan distance between the crash and severest crash context vectors outperforms tried models.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N44546a0ffe1949fba776093562a794f1
    19 Ne264456c23fd464c9c06a653429753ca
    20 sg:journal.1136714
    21 schema:name VANET IR-CAS for Safety ACN: Information Retrieval Context Aware System for VANET Automatic Crash Notification Safety Application
    22 schema:pagination 127-138
    23 schema:productId N7fd5b161d5654f7d91ec57f583b689f3
    24 Ndbc28d7ba32f4fa79b8f4f577a2527a9
    25 Nfb2e96cb5ba44907be2329c64860ffa6
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223239
    27 https://doi.org/10.1007/s13177-014-0108-x
    28 schema:sdDatePublished 2019-04-10T23:26
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nef451d322c584210acc7876c6b387b5a
    31 schema:url http://link.springer.com/10.1007%2Fs13177-014-0108-x
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N44546a0ffe1949fba776093562a794f1 schema:volumeNumber 14
    36 rdf:type schema:PublicationVolume
    37 N634995fa48d44e6d98c54ecb14e30ddf rdf:first sg:person.01133760566.26
    38 rdf:rest N6bc78d93c0574982b2987f75f97ae0d8
    39 N6bc78d93c0574982b2987f75f97ae0d8 rdf:first sg:person.010544641574.33
    40 rdf:rest rdf:nil
    41 N7fd5b161d5654f7d91ec57f583b689f3 schema:name readcube_id
    42 schema:value 1da4f61289024735eed3cdc8d53a9b7653305e50d85d5de9b1ab0c897fac501e
    43 rdf:type schema:PropertyValue
    44 Na40c4f1c34d247fa87112d4311916450 rdf:first sg:person.015365421777.17
    45 rdf:rest N634995fa48d44e6d98c54ecb14e30ddf
    46 Ndbc28d7ba32f4fa79b8f4f577a2527a9 schema:name dimensions_id
    47 schema:value pub.1006223239
    48 rdf:type schema:PropertyValue
    49 Ne264456c23fd464c9c06a653429753ca schema:issueNumber 3
    50 rdf:type schema:PublicationIssue
    51 Nef451d322c584210acc7876c6b387b5a schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nfb2e96cb5ba44907be2329c64860ffa6 schema:name doi
    54 schema:value 10.1007/s13177-014-0108-x
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Medical and Health Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Public Health and Health Services
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136714 schema:issn 1348-8503
    63 1868-8659
    64 schema:name International Journal of Intelligent Transportation Systems Research
    65 rdf:type schema:Periodical
    66 sg:person.010544641574.33 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    67 schema:familyName Karray
    68 schema:givenName Fakhri
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33
    70 rdf:type schema:Person
    71 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    72 schema:familyName Kamel
    73 schema:givenName Mohamed S.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    75 rdf:type schema:Person
    76 sg:person.015365421777.17 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    77 schema:familyName Nassar
    78 schema:givenName Lobna
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365421777.17
    80 rdf:type schema:Person
    81 sg:pub.10.1007/s10844-009-0096-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026438725
    82 https://doi.org/10.1007/s10844-009-0096-5
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s13177-014-0078-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033315688
    85 https://doi.org/10.1007/s13177-014-0078-z
    86 rdf:type schema:CreativeWork
    87 https://app.dimensions.ai/details/publication/pub.1078651311 schema:CreativeWork
    88 https://doi.org/10.1016/j.pmcj.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047005054
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/itsc.2010.5625104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095691920
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1145/2386958.2386973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010180854
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1145/508791.508919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702571
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1504/ijvas.2012.051267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067501249
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    99 schema:name Electrical & Computer Engineering, University of Waterloo, 200 University Avenue, N2L 3G1, West Waterloo, ON, Canada
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...