A Note on Bootstrap for Gupta’s Subset Selection Procedure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-24

AUTHORS

Jun-ichiro Fukuchi

ABSTRACT

This study introduces a method of selecting a subset of k populations containing the best when the populations are ranked in terms of the population means. It is assumed that the populations have an unknown location family of distribution functions. The proposed method involves estimating the constant in Gupta’s subset selection procedure by bootstrap. It is shown that estimating this constant amounts to estimating the distribution function of a certain function of random variables. The proposed bootstrap method is shown to be consistent and second-order correct in the sense that the accuracy of bootstrap approximation is better than that of the approximation based on limiting distribution. Results of a simulation study are given. More... »

PAGES

1-19

Journal

TITLE

Sankhya A

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13171-019-00163-6

DOI

http://dx.doi.org/10.1007/s13171-019-00163-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111647090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gakushuin University", 
          "id": "https://www.grid.ac/institutes/grid.256169.f", 
          "name": [
            "Faculty of Economics, Gakushuin University, 1-5-1 Mejiro Toshimaku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuchi", 
        "givenName": "Jun-ichiro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/aos/1176344552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012894299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015802549", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0795-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015802549", 
          "https://doi.org/10.1007/978-1-4612-0795-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0795-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015802549", 
          "https://doi.org/10.1007/978-1-4612-0795-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(95)00174-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016672428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200710457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017412004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00025435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018758498", 
          "https://doi.org/10.1007/bf00025435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00025435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018758498", 
          "https://doi.org/10.1007/bf00025435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(95)00176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026476299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.4710350303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028101977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(95)00175-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030914551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035796616", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0504-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796616", 
          "https://doi.org/10.1007/978-1-4684-0504-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0504-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796616", 
          "https://doi.org/10.1007/978-1-4684-0504-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10888-006-9043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044425480", 
          "https://doi.org/10.1007/s10888-006-9043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4384-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045715699", 
          "https://doi.org/10.1007/978-1-4612-4384-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4384-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045715699", 
          "https://doi.org/10.1007/978-1-4612-4384-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1965.10490251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058283687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610928308828591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058332989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064399400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176346267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.40.11.1484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064721190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-24", 
    "datePublishedReg": "2019-01-24", 
    "description": "This study introduces a method of selecting a subset of k populations containing the best when the populations are ranked in terms of the population means. It is assumed that the populations have an unknown location family of distribution functions. The proposed method involves estimating the constant in Gupta\u2019s subset selection procedure by bootstrap. It is shown that estimating this constant amounts to estimating the distribution function of a certain function of random variables. The proposed bootstrap method is shown to be consistent and second-order correct in the sense that the accuracy of bootstrap approximation is better than that of the approximation based on limiting distribution. Results of a simulation study are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13171-019-00163-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043385", 
        "issn": [
          "0976-836X", 
          "0976-3139"
        ], 
        "name": "Sankhya A", 
        "type": "Periodical"
      }
    ], 
    "name": "A Note on Bootstrap for Gupta\u2019s Subset Selection Procedure", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a166f2f3a66a0887742d153cff90523c5f785374ac21c01d0eb8e56a8da1a025"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13171-019-00163-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111647090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13171-019-00163-6", 
      "https://app.dimensions.ai/details/publication/pub.1111647090"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13171-019-00163-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13171-019-00163-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13171-019-00163-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13171-019-00163-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13171-019-00163-6'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13171-019-00163-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0b1903540afe479e89b6a0914f5a2aab
4 schema:citation sg:pub.10.1007/978-1-4612-0795-5
5 sg:pub.10.1007/978-1-4612-4384-7
6 sg:pub.10.1007/978-1-4684-0504-0
7 sg:pub.10.1007/bf00025435
8 sg:pub.10.1007/s10888-006-9043-7
9 https://app.dimensions.ai/details/publication/pub.1015802549
10 https://app.dimensions.ai/details/publication/pub.1035796616
11 https://doi.org/10.1002/bimj.200710457
12 https://doi.org/10.1002/bimj.4710350303
13 https://doi.org/10.1016/0378-3758(95)00174-3
14 https://doi.org/10.1016/0378-3758(95)00175-1
15 https://doi.org/10.1016/0378-3758(95)00176-x
16 https://doi.org/10.1080/00401706.1965.10490251
17 https://doi.org/10.1080/03610928308828591
18 https://doi.org/10.1214/aoms/1177698612
19 https://doi.org/10.1214/aos/1176344134
20 https://doi.org/10.1214/aos/1176344552
21 https://doi.org/10.1214/aos/1176345636
22 https://doi.org/10.1214/aos/1176345637
23 https://doi.org/10.1214/aos/1176346267
24 https://doi.org/10.1214/aos/1176347994
25 https://doi.org/10.1287/mnsc.40.11.1484
26 schema:datePublished 2019-01-24
27 schema:datePublishedReg 2019-01-24
28 schema:description This study introduces a method of selecting a subset of k populations containing the best when the populations are ranked in terms of the population means. It is assumed that the populations have an unknown location family of distribution functions. The proposed method involves estimating the constant in Gupta’s subset selection procedure by bootstrap. It is shown that estimating this constant amounts to estimating the distribution function of a certain function of random variables. The proposed bootstrap method is shown to be consistent and second-order correct in the sense that the accuracy of bootstrap approximation is better than that of the approximation based on limiting distribution. Results of a simulation study are given.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1043385
33 schema:name A Note on Bootstrap for Gupta’s Subset Selection Procedure
34 schema:pagination 1-19
35 schema:productId N36ddfa2fa15140af83496f5888af2081
36 Nd7200b28437e4324bdfe1c3a8476bd89
37 Ne6d0aef9cb7c40aaad438161dacbccb4
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111647090
39 https://doi.org/10.1007/s13171-019-00163-6
40 schema:sdDatePublished 2019-04-11T08:56
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N1abca36babe8444fa97230c0f0a304d3
43 schema:url https://link.springer.com/10.1007%2Fs13171-019-00163-6
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0474b5dcb61d4dc48a0e0bdbe803c9c0 schema:affiliation https://www.grid.ac/institutes/grid.256169.f
48 schema:familyName Fukuchi
49 schema:givenName Jun-ichiro
50 rdf:type schema:Person
51 N0b1903540afe479e89b6a0914f5a2aab rdf:first N0474b5dcb61d4dc48a0e0bdbe803c9c0
52 rdf:rest rdf:nil
53 N1abca36babe8444fa97230c0f0a304d3 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N36ddfa2fa15140af83496f5888af2081 schema:name dimensions_id
56 schema:value pub.1111647090
57 rdf:type schema:PropertyValue
58 Nd7200b28437e4324bdfe1c3a8476bd89 schema:name doi
59 schema:value 10.1007/s13171-019-00163-6
60 rdf:type schema:PropertyValue
61 Ne6d0aef9cb7c40aaad438161dacbccb4 schema:name readcube_id
62 schema:value a166f2f3a66a0887742d153cff90523c5f785374ac21c01d0eb8e56a8da1a025
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
68 schema:name Statistics
69 rdf:type schema:DefinedTerm
70 sg:journal.1043385 schema:issn 0976-3139
71 0976-836X
72 schema:name Sankhya A
73 rdf:type schema:Periodical
74 sg:pub.10.1007/978-1-4612-0795-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015802549
75 https://doi.org/10.1007/978-1-4612-0795-5
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/978-1-4612-4384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045715699
78 https://doi.org/10.1007/978-1-4612-4384-7
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-1-4684-0504-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035796616
81 https://doi.org/10.1007/978-1-4684-0504-0
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00025435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018758498
84 https://doi.org/10.1007/bf00025435
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s10888-006-9043-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044425480
87 https://doi.org/10.1007/s10888-006-9043-7
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1015802549 schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1035796616 schema:CreativeWork
91 https://doi.org/10.1002/bimj.200710457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412004
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/bimj.4710350303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028101977
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0378-3758(95)00174-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016672428
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0378-3758(95)00175-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030914551
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0378-3758(95)00176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026476299
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/00401706.1965.10490251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058283687
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/03610928308828591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058332989
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1214/aoms/1177698612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064399400
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/aos/1176344134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407400
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1214/aos/1176344552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894299
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1214/aos/1176345636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407859
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1214/aos/1176345637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407860
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1214/aos/1176346267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408102
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1214/aos/1176347994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408511
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1287/mnsc.40.11.1484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064721190
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.256169.f schema:alternateName Gakushuin University
122 schema:name Faculty of Economics, Gakushuin University, 1-5-1 Mejiro Toshimaku, Tokyo, Japan
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...