A note on the asymptotic distribution of LASSO estimator for correlated data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Shuva Gupta

ABSTRACT

The asymptotic distribution of the Lasso estimator for regression models with independent errors has been investigated by Knight and Fu (2000). In this note we extend these results to regression models with a general weak dependence structure. We determine the asymptotic distribution of the Lasso estimator when the number of parameters M is fixed and the number of observations, n, converges to infinity. We show that, for an appropriate choice of the tuning parameter of the method, this asymptotic distribution reduces to a multivariate normal distribution. As an illustrative example, the special case of AR(1) is also investigated. More... »

PAGES

10-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13171-012-0006-8

DOI

http://dx.doi.org/10.1007/s13171-012-0006-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011474422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Statistics, Department of Mathematics, Northern Illinois University, De\u00a0Kalb, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.261128.e", 
          "name": [
            "Division of Statistics, Department of Mathematics, Northern Illinois University, De\u00a0Kalb, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Shuva", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-2545-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011708206", 
          "https://doi.org/10.1007/978-1-4757-2545-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-69952-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033434205", 
          "https://doi.org/10.1007/978-0-387-69952-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "The asymptotic distribution of the Lasso estimator for regression models with independent errors has been investigated by Knight and Fu (2000). In this note we extend these results to regression models with a general weak dependence structure. We determine the asymptotic distribution of the Lasso estimator when the number of parameters M is fixed and the number of observations, n, converges to infinity. We show that, for an appropriate choice of the tuning parameter of the method, this asymptotic distribution reduces to a multivariate normal distribution. As an illustrative example, the special case of AR(1) is also investigated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13171-012-0006-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043385", 
        "issn": [
          "0976-836X", 
          "0976-8378"
        ], 
        "name": "Sankhya A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "asymptotic distribution", 
      "Lasso estimator", 
      "multivariate normal distribution", 
      "weak dependence structure", 
      "number of observations", 
      "parameter M", 
      "dependence structure", 
      "independent errors", 
      "illustrative example", 
      "tuning parameters", 
      "special case", 
      "normal distribution", 
      "correlated data", 
      "estimator", 
      "appropriate choice", 
      "regression models", 
      "converges", 
      "infinity", 
      "distribution", 
      "model", 
      "error", 
      "note", 
      "parameters", 
      "number", 
      "structure", 
      "cases", 
      "observations", 
      "results", 
      "choice", 
      "data", 
      "FU", 
      "Knight", 
      "example", 
      "method"
    ], 
    "name": "A note on the asymptotic distribution of LASSO estimator for correlated data", 
    "pagination": "10-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011474422"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13171-012-0006-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13171-012-0006-8", 
      "https://app.dimensions.ai/details/publication/pub.1011474422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_553.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13171-012-0006-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13171-012-0006-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13171-012-0006-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13171-012-0006-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13171-012-0006-8'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      61 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13171-012-0006-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6389d7f6c1cd49a287ddae19f1be295a
4 schema:citation sg:pub.10.1007/978-0-387-69952-3
5 sg:pub.10.1007/978-1-4757-2545-2
6 schema:datePublished 2012-02
7 schema:datePublishedReg 2012-02-01
8 schema:description The asymptotic distribution of the Lasso estimator for regression models with independent errors has been investigated by Knight and Fu (2000). In this note we extend these results to regression models with a general weak dependence structure. We determine the asymptotic distribution of the Lasso estimator when the number of parameters M is fixed and the number of observations, n, converges to infinity. We show that, for an appropriate choice of the tuning parameter of the method, this asymptotic distribution reduces to a multivariate normal distribution. As an illustrative example, the special case of AR(1) is also investigated.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N0a7b6c022a354c93a6ecd1dec0267a25
12 Nc586f88dce0346f08fb5745fa03c8660
13 sg:journal.1043385
14 schema:keywords FU
15 Knight
16 Lasso estimator
17 appropriate choice
18 asymptotic distribution
19 cases
20 choice
21 converges
22 correlated data
23 data
24 dependence structure
25 distribution
26 error
27 estimator
28 example
29 illustrative example
30 independent errors
31 infinity
32 method
33 model
34 multivariate normal distribution
35 normal distribution
36 note
37 number
38 number of observations
39 observations
40 parameter M
41 parameters
42 regression models
43 results
44 special case
45 structure
46 tuning parameters
47 weak dependence structure
48 schema:name A note on the asymptotic distribution of LASSO estimator for correlated data
49 schema:pagination 10-28
50 schema:productId N5be60ed3a5f54d528b9057259c49ca91
51 N6409fcc39ad041cf8784bbd7307b1aef
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011474422
53 https://doi.org/10.1007/s13171-012-0006-8
54 schema:sdDatePublished 2022-11-24T20:55
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N6845aefacca14ee88273c9d7ac69964c
57 schema:url https://doi.org/10.1007/s13171-012-0006-8
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0a7b6c022a354c93a6ecd1dec0267a25 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N5a9ac6c337244999a731d3a60d280a50 schema:affiliation grid-institutes:grid.261128.e
64 schema:familyName Gupta
65 schema:givenName Shuva
66 rdf:type schema:Person
67 N5be60ed3a5f54d528b9057259c49ca91 schema:name dimensions_id
68 schema:value pub.1011474422
69 rdf:type schema:PropertyValue
70 N6389d7f6c1cd49a287ddae19f1be295a rdf:first N5a9ac6c337244999a731d3a60d280a50
71 rdf:rest rdf:nil
72 N6409fcc39ad041cf8784bbd7307b1aef schema:name doi
73 schema:value 10.1007/s13171-012-0006-8
74 rdf:type schema:PropertyValue
75 N6845aefacca14ee88273c9d7ac69964c schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nc586f88dce0346f08fb5745fa03c8660 schema:volumeNumber 74
78 rdf:type schema:PublicationVolume
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
83 schema:name Statistics
84 rdf:type schema:DefinedTerm
85 sg:journal.1043385 schema:issn 0976-836X
86 0976-8378
87 schema:name Sankhya A
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:pub.10.1007/978-0-387-69952-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033434205
91 https://doi.org/10.1007/978-0-387-69952-3
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-1-4757-2545-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011708206
94 https://doi.org/10.1007/978-1-4757-2545-2
95 rdf:type schema:CreativeWork
96 grid-institutes:grid.261128.e schema:alternateName Division of Statistics, Department of Mathematics, Northern Illinois University, De Kalb, IL, USA
97 schema:name Division of Statistics, Department of Mathematics, Northern Illinois University, De Kalb, IL, USA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...