Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-25

AUTHORS

Alphanie Midelet, Sébastien Bailly, Renaud Tamisier, Jean-Christian Borel, Sébastien Baillieul, Ronan Le Hy, Marie-Caroline Schaeffer, Jean-Louis Pépin

ABSTRACT

BackgroundContinuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.MethodsWe analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.ResultsFrom telemonitoring records of 2860 CPAP-treated patients (age: 66.31 ± 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 ± 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 ± 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (P value < 0.01).ConclusionThis new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment. More... »

PAGES

535-544

References to SciGraph publications

  • 2019-01-07. High-performance medicine: the convergence of human and artificial intelligence in NATURE MEDICINE
  • 2019-02-14. Obstructive sleep apnea and comorbidities: a dangerous liaison in MULTIDISCIPLINARY RESPIRATORY MEDICINE
  • 2015-06-25. Obstructive sleep apnoea syndrome in NATURE REVIEWS DISEASE PRIMERS
  • 2017-01-15. Hidden Markov Models for Protein Domain Homology Identification and Analysis in SH2 DOMAINS
  • 2018-12-03. From CPAP to tailored therapy for obstructive sleep Apnoea in MULTIDISCIPLINARY RESPIRATORY MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13167-021-00264-z

    DOI

    http://dx.doi.org/10.1007/s13167-021-00264-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143053726

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34956425


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Probayes, Montbonnot-Saint-Martin, France", 
              "id": "http://www.grid.ac/institutes/grid.437124.7", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "Probayes, Montbonnot-Saint-Martin, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Midelet", 
            "givenName": "Alphanie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.410529.b", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bailly", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.01125634305.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125634305.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.410529.b", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tamisier", 
            "givenName": "Renaud", 
            "id": "sg:person.01301106653.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301106653.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AGIR \u00e0 dom. HomeCare Charity, 38240, Meylan, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "AGIR \u00e0 dom. HomeCare Charity, 38240, Meylan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borel", 
            "givenName": "Jean-Christian", 
            "id": "sg:person.01133457707.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133457707.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.410529.b", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baillieul", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.01223627371.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223627371.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Probayes, Montbonnot-Saint-Martin, France", 
              "id": "http://www.grid.ac/institutes/grid.437124.7", 
              "name": [
                "Probayes, Montbonnot-Saint-Martin, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Hy", 
            "givenName": "Ronan", 
            "id": "sg:person.011630206333.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630206333.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Probayes, Montbonnot-Saint-Martin, France", 
              "id": "http://www.grid.ac/institutes/grid.437124.7", 
              "name": [
                "Probayes, Montbonnot-Saint-Martin, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaeffer", 
            "givenName": "Marie-Caroline", 
            "id": "sg:person.014302160557.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014302160557.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.410529.b", 
              "name": [
                "HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France", 
                "EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9pin", 
            "givenName": "Jean-Louis", 
            "id": "sg:person.01177006343.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177006343.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4939-6762-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023060542", 
              "https://doi.org/10.1007/978-1-4939-6762-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0300-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110955659", 
              "https://doi.org/10.1038/s41591-018-0300-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40248-018-0157-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110074222", 
              "https://doi.org/10.1186/s40248-018-0157-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40248-019-0172-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112119180", 
              "https://doi.org/10.1186/s40248-019-0172-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrdp.2015.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038057216", 
              "https://doi.org/10.1038/nrdp.2015.15"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-25", 
        "datePublishedReg": "2021-11-25", 
        "description": "BackgroundContinuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.MethodsWe analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.ResultsFrom telemonitoring records of 2860 CPAP-treated patients (age: 66.31 \u00b1 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 \u00b1 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 \u00b1 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (P value < 0.01).ConclusionThis new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13167-021-00264-z", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8639228", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042290", 
            "issn": [
              "1878-5077", 
              "1878-5085"
            ], 
            "name": "EPMA Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "obstructive sleep apnoea", 
          "treatment failure", 
          "BackgroundContinuous positive airway pressure", 
          "residual apnoea-hypopnoea index", 
          "positive airway pressure", 
          "apnoea-hypopnoea index", 
          "sleep apnoea patients", 
          "distinct therapeutic strategies", 
          "CPAP treatment", 
          "airway pressure", 
          "CPAP usage", 
          "sleep apnoea", 
          "CPAP adherence", 
          "apnoea patients", 
          "millions of individuals", 
          "therapeutic strategies", 
          "treatment efficacy", 
          "CPAP management", 
          "predictive indicator", 
          "patients", 
          "early detection", 
          "remote telemonitoring", 
          "reference treatment", 
          "CPAP", 
          "efficacy", 
          "personalized interpretation", 
          "treatment", 
          "primary objective", 
          "secondary goal", 
          "failure", 
          "apnoea", 
          "therapy", 
          "MethodsWe", 
          "cluster 0", 
          "individuals", 
          "telemonitoring", 
          "adherence", 
          "cluster 4", 
          "adults", 
          "daily information", 
          "min", 
          "deterioration", 
          "index", 
          "management", 
          "data", 
          "records", 
          "action", 
          "pressure", 
          "objective", 
          "need", 
          "indicators", 
          "strategies", 
          "detection", 
          "personalized actions", 
          "millions", 
          "variability", 
          "state", 
          "Markov model", 
          "goal", 
          "information", 
          "tool", 
          "clusters", 
          "informs", 
          "new approach", 
          "usage", 
          "method", 
          "probability", 
          "model", 
          "trajectories", 
          "approach", 
          "sequence", 
          "interpretation", 
          "data science methods", 
          "science methods", 
          "abandonment", 
          "resources", 
          "deployment", 
          "backbone", 
          "segmentation", 
          "model segmentation", 
          "Hidden Markov Model", 
          "sequence of states"
        ], 
        "name": "Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure", 
        "pagination": "535-544", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143053726"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13167-021-00264-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34956425"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13167-021-00264-z", 
          "https://app.dimensions.ai/details/publication/pub.1143053726"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13167-021-00264-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13167-021-00264-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13167-021-00264-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13167-021-00264-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13167-021-00264-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      21 PREDICATES      112 URIs      99 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13167-021-00264-z schema:about anzsrc-for:11
    2 anzsrc-for:1102
    3 schema:author Naab6d21a0d9f4cc983e5f792314a2c66
    4 schema:citation sg:pub.10.1007/978-1-4939-6762-9_3
    5 sg:pub.10.1038/nrdp.2015.15
    6 sg:pub.10.1038/s41591-018-0300-7
    7 sg:pub.10.1186/s40248-018-0157-0
    8 sg:pub.10.1186/s40248-019-0172-9
    9 schema:datePublished 2021-11-25
    10 schema:datePublishedReg 2021-11-25
    11 schema:description BackgroundContinuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.MethodsWe analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.ResultsFrom telemonitoring records of 2860 CPAP-treated patients (age: 66.31 ± 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 ± 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 ± 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (P value < 0.01).ConclusionThis new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N2eaf58df99be49e68ecf319e77a80b3d
    15 N95e2a33a22f843a19111e9398483c689
    16 sg:journal.1042290
    17 schema:keywords BackgroundContinuous positive airway pressure
    18 CPAP
    19 CPAP adherence
    20 CPAP management
    21 CPAP treatment
    22 CPAP usage
    23 Hidden Markov Model
    24 Markov model
    25 MethodsWe
    26 abandonment
    27 action
    28 adherence
    29 adults
    30 airway pressure
    31 apnoea
    32 apnoea patients
    33 apnoea-hypopnoea index
    34 approach
    35 backbone
    36 cluster 0
    37 cluster 4
    38 clusters
    39 daily information
    40 data
    41 data science methods
    42 deployment
    43 detection
    44 deterioration
    45 distinct therapeutic strategies
    46 early detection
    47 efficacy
    48 failure
    49 goal
    50 index
    51 indicators
    52 individuals
    53 information
    54 informs
    55 interpretation
    56 management
    57 method
    58 millions
    59 millions of individuals
    60 min
    61 model
    62 model segmentation
    63 need
    64 new approach
    65 objective
    66 obstructive sleep apnoea
    67 patients
    68 personalized actions
    69 personalized interpretation
    70 positive airway pressure
    71 predictive indicator
    72 pressure
    73 primary objective
    74 probability
    75 records
    76 reference treatment
    77 remote telemonitoring
    78 residual apnoea-hypopnoea index
    79 resources
    80 science methods
    81 secondary goal
    82 segmentation
    83 sequence
    84 sequence of states
    85 sleep apnoea
    86 sleep apnoea patients
    87 state
    88 strategies
    89 telemonitoring
    90 therapeutic strategies
    91 therapy
    92 tool
    93 trajectories
    94 treatment
    95 treatment efficacy
    96 treatment failure
    97 usage
    98 variability
    99 schema:name Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure
    100 schema:pagination 535-544
    101 schema:productId N4be3d9811434454398f771eff041aadb
    102 N6606b16c1bf4410498e59bb71de22ae9
    103 Nad5bc16294b0447180bd90e40f4b0960
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143053726
    105 https://doi.org/10.1007/s13167-021-00264-z
    106 schema:sdDatePublished 2022-12-01T06:42
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher Ne1e901386c824615ab5a87d7a3e86253
    109 schema:url https://doi.org/10.1007/s13167-021-00264-z
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N2eaf58df99be49e68ecf319e77a80b3d schema:volumeNumber 12
    114 rdf:type schema:PublicationVolume
    115 N417a2799e6a94dfc9fcdbfdbfb1d8e60 rdf:first sg:person.01125634305.00
    116 rdf:rest Nc99d54915cbd489b9e5a39a6011eb7ae
    117 N4be3d9811434454398f771eff041aadb schema:name pubmed_id
    118 schema:value 34956425
    119 rdf:type schema:PropertyValue
    120 N6606b16c1bf4410498e59bb71de22ae9 schema:name dimensions_id
    121 schema:value pub.1143053726
    122 rdf:type schema:PropertyValue
    123 N7aaca1d707de487bbcbb77ab35855db7 rdf:first sg:person.01177006343.55
    124 rdf:rest rdf:nil
    125 N7c49efb858c24f2bb0a0127d68750256 rdf:first sg:person.01223627371.09
    126 rdf:rest Nfdecb722b28741238e5dc582e363af50
    127 N8202f7e8fa4446628d2022887a70c5f1 rdf:first sg:person.014302160557.87
    128 rdf:rest N7aaca1d707de487bbcbb77ab35855db7
    129 N95e2a33a22f843a19111e9398483c689 schema:issueNumber 4
    130 rdf:type schema:PublicationIssue
    131 Naab6d21a0d9f4cc983e5f792314a2c66 rdf:first Nbfa194762cf74bfd8fcccb618b83055a
    132 rdf:rest N417a2799e6a94dfc9fcdbfdbfb1d8e60
    133 Nad5bc16294b0447180bd90e40f4b0960 schema:name doi
    134 schema:value 10.1007/s13167-021-00264-z
    135 rdf:type schema:PropertyValue
    136 Nbfa194762cf74bfd8fcccb618b83055a schema:affiliation grid-institutes:grid.437124.7
    137 schema:familyName Midelet
    138 schema:givenName Alphanie
    139 rdf:type schema:Person
    140 Nc99d54915cbd489b9e5a39a6011eb7ae rdf:first sg:person.01301106653.51
    141 rdf:rest Nc99f8ca212c54e619a75b66dccb70e4b
    142 Nc99f8ca212c54e619a75b66dccb70e4b rdf:first sg:person.01133457707.19
    143 rdf:rest N7c49efb858c24f2bb0a0127d68750256
    144 Ne1e901386c824615ab5a87d7a3e86253 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 Nfdecb722b28741238e5dc582e363af50 rdf:first sg:person.011630206333.69
    147 rdf:rest N8202f7e8fa4446628d2022887a70c5f1
    148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Medical and Health Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Cardiorespiratory Medicine and Haematology
    153 rdf:type schema:DefinedTerm
    154 sg:grant.8639228 http://pending.schema.org/fundedItem sg:pub.10.1007/s13167-021-00264-z
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1042290 schema:issn 1878-5077
    157 1878-5085
    158 schema:name EPMA Journal
    159 schema:publisher Springer Nature
    160 rdf:type schema:Periodical
    161 sg:person.01125634305.00 schema:affiliation grid-institutes:grid.410529.b
    162 schema:familyName Bailly
    163 schema:givenName Sébastien
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125634305.00
    165 rdf:type schema:Person
    166 sg:person.01133457707.19 schema:affiliation grid-institutes:None
    167 schema:familyName Borel
    168 schema:givenName Jean-Christian
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133457707.19
    170 rdf:type schema:Person
    171 sg:person.011630206333.69 schema:affiliation grid-institutes:grid.437124.7
    172 schema:familyName Le Hy
    173 schema:givenName Ronan
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630206333.69
    175 rdf:type schema:Person
    176 sg:person.01177006343.55 schema:affiliation grid-institutes:grid.410529.b
    177 schema:familyName Pépin
    178 schema:givenName Jean-Louis
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177006343.55
    180 rdf:type schema:Person
    181 sg:person.01223627371.09 schema:affiliation grid-institutes:grid.410529.b
    182 schema:familyName Baillieul
    183 schema:givenName Sébastien
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223627371.09
    185 rdf:type schema:Person
    186 sg:person.01301106653.51 schema:affiliation grid-institutes:grid.410529.b
    187 schema:familyName Tamisier
    188 schema:givenName Renaud
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301106653.51
    190 rdf:type schema:Person
    191 sg:person.014302160557.87 schema:affiliation grid-institutes:grid.437124.7
    192 schema:familyName Schaeffer
    193 schema:givenName Marie-Caroline
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014302160557.87
    195 rdf:type schema:Person
    196 sg:pub.10.1007/978-1-4939-6762-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023060542
    197 https://doi.org/10.1007/978-1-4939-6762-9_3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nrdp.2015.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038057216
    200 https://doi.org/10.1038/nrdp.2015.15
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/s41591-018-0300-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110955659
    203 https://doi.org/10.1038/s41591-018-0300-7
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/s40248-018-0157-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110074222
    206 https://doi.org/10.1186/s40248-018-0157-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/s40248-019-0172-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112119180
    209 https://doi.org/10.1186/s40248-019-0172-9
    210 rdf:type schema:CreativeWork
    211 grid-institutes:None schema:alternateName AGIR à dom. HomeCare Charity, 38240, Meylan, France
    212 schema:name AGIR à dom. HomeCare Charity, 38240, Meylan, France
    213 HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France
    214 rdf:type schema:Organization
    215 grid-institutes:grid.410529.b schema:alternateName EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France
    216 schema:name EFCR Laboratory, Grenoble Alpes University Hospital, 38000, Grenoble, France
    217 HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France
    218 rdf:type schema:Organization
    219 grid-institutes:grid.437124.7 schema:alternateName Probayes, Montbonnot-Saint-Martin, France
    220 schema:name HP2 Laboratory, Inserm U1042, Grenoble Alpes University, 38000, Grenoble, France
    221 Probayes, Montbonnot-Saint-Martin, France
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...