Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-24

AUTHORS

Siqi Ge, Xizhu Xu, Jie Zhang, Haifeng Hou, Hao Wang, Di Liu, Xiaoyu Zhang, Manshu Song, Dong Li, Yong Zhou, Youxin Wang, Wei Wang

ABSTRACT

BackgroundThe prevalence of diabetes, constituted chiefly by type 2 diabetes mellitus (T2DM), is a global public health threat. Suboptimal health status (SHS), a physical state between health and disease, might contribute to the progression or development of T2DM.MethodsWe conducted a prospective cohort study, based on the China Suboptimal Health Cohort Study (COACS), to understand the impact of SHS on the progress of T2DM. We examined associations between SHS and T2DM outcomes using multivariable logistic regression models and constructed predictive models for T2DM onset based on SHS.ResultsA total of 61 participants developed T2DM after an average of 3.1 years of follow-up. Participants with higher SHS scores had more T2DM outcomes (p = 0.036). Moreover, compared with the lowest quartile of SHS scores, participants with fourth, third, and second quartile SHS scores were found to be associated with a 1.7-fold, 1.6-fold, and 1.5-fold risk of developing T2DM, respectively. The predictive model constructed with SHS had higher discriminatory power (AUC = 0.848) than the model without SHS (AUC = 0.795).ConclusionsThe present study suggests that a higher SHS score is associated with a higher incidence of T2DM. SHS is a new independent risk factor for T2DM and has the capability to act as a predictive tool for T2DM onset. The evaluation of SHS combined with the analysis of modifiable risk factors for SHS allows the risk stratification of T2DM, which may consequently contribute to the prevention of T2DM development. These findings might require further validation in a longer-term follow-up study. More... »

PAGES

65-72

References to SciGraph publications

  • 2014-02-13. Traditional Chinese medicine and new concepts of predictive, preventive and personalized medicine in diagnosis and treatment of suboptimal health in EPMA JOURNAL
  • 2018-01-05. Association between lifestyle factors and suboptimal health status among Chinese college freshmen: a cross-sectional study in BMC PUBLIC HEALTH
  • 2018-08-28. Suboptimal health status and psychological symptoms among Chinese college students: a perspective of predictive, preventive and personalised health in EPMA JOURNAL
  • 2014-12-11. Associations between breakfast eating habits and health-promoting lifestyle, suboptimal health status in Southern China: a population based, cross sectional study in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2016-10-13. China suboptimal health cohort study: rationale, design and baseline characteristics in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2011-12-28. Association of Suboptimal Health Status and Cardiovascular Risk Factors in Urban Chinese Workers in JOURNAL OF URBAN HEALTH
  • 2017-11-03. Association between Ideal Cardiovascular Health Metrics and Suboptimal Health Status in Chinese Population in SCIENTIFIC REPORTS
  • 2011-09-08. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting in BMC MEDICINE
  • 2017-10-18. Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: a case-control study in a Ghanaian population in EPMA JOURNAL
  • 2016-09-12. Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease in EPMA JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13167-019-0159-9

    DOI

    http://dx.doi.org/10.1007/s13167-019-0159-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111638611

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30984315


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing Neurosurgical Institute, Capital Medical University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.411617.4", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
                "Beijing Neurosurgical Institute, Capital Medical University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ge", 
            "givenName": "Siqi", 
            "id": "sg:person.01001117010.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001117010.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Public Health, Taishan Medical University, 271000, Taian, China", 
              "id": "http://www.grid.ac/institutes/grid.410638.8", 
              "name": [
                "School of Public Health, Taishan Medical University, 271000, Taian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Xizhu", 
            "id": "sg:person.010733117037.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733117037.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jie", 
            "id": "sg:person.0641462427.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641462427.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Public Health, Taishan Medical University, 271000, Taian, China", 
              "id": "http://www.grid.ac/institutes/grid.410638.8", 
              "name": [
                "School of Public Health, Taishan Medical University, 271000, Taian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hou", 
            "givenName": "Haifeng", 
            "id": "sg:person.0607015560.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607015560.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
                "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Hao", 
            "id": "sg:person.01250640127.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250640127.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Di", 
            "id": "sg:person.013135626213.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013135626213.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoyu", 
            "id": "sg:person.013270644212.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270644212.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
                "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Manshu", 
            "id": "sg:person.0645173642.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645173642.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Public Health, Taishan Medical University, 271000, Taian, China", 
              "id": "http://www.grid.ac/institutes/grid.410638.8", 
              "name": [
                "School of Public Health, Taishan Medical University, 271000, Taian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Dong", 
            "id": "sg:person.01206207226.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yong", 
            "id": "sg:person.0744053330.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744053330.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
                "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Youxin", 
            "id": "sg:person.01231574010.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231574010.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1038.a", 
              "name": [
                "Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China", 
                "School of Public Health, Taishan Medical University, 271000, Taian, China", 
                "School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wei", 
            "id": "sg:person.0622416310.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622416310.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13167-017-0119-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092271354", 
              "https://doi.org/10.1007/s13167-017-0119-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13167-018-0148-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106388444", 
              "https://doi.org/10.1007/s13167-018-0148-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7015-9-103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016512016", 
              "https://doi.org/10.1186/1741-7015-9-103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12889-017-5002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100198405", 
              "https://doi.org/10.1186/s12889-017-5002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-014-0348-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022707368", 
              "https://doi.org/10.1186/s12967-014-0348-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11524-011-9636-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039749048", 
              "https://doi.org/10.1007/s11524-011-9636-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-15101-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092446450", 
              "https://doi.org/10.1038/s41598-017-15101-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-016-1046-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016567684", 
              "https://doi.org/10.1186/s12967-016-1046-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13167-016-0068-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006663150", 
              "https://doi.org/10.1186/s13167-016-0068-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1878-5085-5-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007108126", 
              "https://doi.org/10.1186/1878-5085-5-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-24", 
        "datePublishedReg": "2019-01-24", 
        "description": "BackgroundThe prevalence of diabetes, constituted chiefly by type 2 diabetes mellitus (T2DM), is a global public health threat. Suboptimal health status (SHS), a physical state between health and disease, might contribute to the progression or development of T2DM.MethodsWe conducted a prospective cohort study, based on the China Suboptimal Health Cohort Study (COACS), to understand the impact of SHS on the progress of T2DM. We examined associations between SHS and T2DM outcomes using multivariable logistic regression models and constructed predictive models for T2DM onset based on SHS.ResultsA total of 61 participants developed T2DM after an average of 3.1\u00a0years of follow-up. Participants with higher SHS scores had more T2DM outcomes (p\u2009=\u00a00.036). Moreover, compared with the lowest quartile of SHS scores, participants with fourth, third, and second quartile SHS scores were found to be associated with a 1.7-fold, 1.6-fold, and 1.5-fold risk of developing T2DM, respectively. The predictive model constructed with SHS had higher discriminatory power (AUC\u2009=\u20090.848) than the model without SHS (AUC\u2009=\u20090.795).ConclusionsThe present study suggests that a higher SHS score is associated with a higher incidence of T2DM. SHS is a new independent risk factor for T2DM and has the capability to act as a predictive tool for T2DM onset. The evaluation of SHS combined with the analysis of modifiable risk factors for SHS allows the risk stratification of T2DM, which may consequently contribute to the prevention of T2DM development. These findings might require further validation in a longer-term follow-up study.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13167-019-0159-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8361375", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8371437", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8879210", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042290", 
            "issn": [
              "1878-5077", 
              "1878-5085"
            ], 
            "name": "EPMA Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "China suboptimal health cohort study", 
          "suboptimal health status", 
          "type 2 diabetes mellitus", 
          "independent risk factor", 
          "Health Cohort Study", 
          "cohort study", 
          "risk factors", 
          "higher SHS scores", 
          "SHS score", 
          "T2DM outcomes", 
          "T2DM onset", 
          "diabetes mellitus", 
          "health status", 
          "long-term follow", 
          "community-based cohort", 
          "multivariable logistic regression models", 
          "new independent risk factor", 
          "prospective cohort study", 
          "modifiable risk factors", 
          "prevalence of diabetes", 
          "development of T2DM", 
          "global public health threat", 
          "logistic regression models", 
          "public health threat", 
          "risk stratification", 
          "T2DM development", 
          "ResultsA total", 
          "lowest quartile", 
          "ConclusionsThe present study", 
          "T2DM", 
          "high incidence", 
          "health threat", 
          "mellitus", 
          "scores", 
          "further validation", 
          "present study", 
          "regression models", 
          "outcomes", 
          "high discriminatory power", 
          "participants", 
          "onset", 
          "status", 
          "discriminatory power", 
          "diabetes", 
          "study", 
          "quartile", 
          "MethodsWe", 
          "factors", 
          "follow", 
          "cohort", 
          "prevalence", 
          "incidence", 
          "disease", 
          "prevention", 
          "progression", 
          "predictive model", 
          "risk", 
          "total", 
          "association", 
          "health", 
          "years", 
          "predictive tool", 
          "findings", 
          "stratification", 
          "development", 
          "evaluation", 
          "average", 
          "model", 
          "impact", 
          "analysis", 
          "validation", 
          "progress", 
          "tool", 
          "physical state", 
          "threat", 
          "state", 
          "capability", 
          "power", 
          "Suboptimal Health Cohort Study", 
          "impact of SHS", 
          "progress of T2DM", 
          "more T2DM outcomes", 
          "second quartile SHS scores", 
          "quartile SHS scores", 
          "evaluation of SHS"
        ], 
        "name": "Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study", 
        "pagination": "65-72", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111638611"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13167-019-0159-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30984315"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13167-019-0159-9", 
          "https://app.dimensions.ai/details/publication/pub.1111638611"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_808.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13167-019-0159-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13167-019-0159-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13167-019-0159-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13167-019-0159-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13167-019-0159-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      22 PREDICATES      122 URIs      103 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13167-019-0159-9 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 anzsrc-for:1117
    4 schema:author Ncc43e1610e03472c8fb87b0290dfcaf9
    5 schema:citation sg:pub.10.1007/s11524-011-9636-8
    6 sg:pub.10.1007/s13167-017-0119-1
    7 sg:pub.10.1007/s13167-018-0148-4
    8 sg:pub.10.1038/s41598-017-15101-5
    9 sg:pub.10.1186/1741-7015-9-103
    10 sg:pub.10.1186/1878-5085-5-4
    11 sg:pub.10.1186/s12889-017-5002-4
    12 sg:pub.10.1186/s12967-014-0348-1
    13 sg:pub.10.1186/s12967-016-1046-y
    14 sg:pub.10.1186/s13167-016-0068-0
    15 schema:datePublished 2019-01-24
    16 schema:datePublishedReg 2019-01-24
    17 schema:description BackgroundThe prevalence of diabetes, constituted chiefly by type 2 diabetes mellitus (T2DM), is a global public health threat. Suboptimal health status (SHS), a physical state between health and disease, might contribute to the progression or development of T2DM.MethodsWe conducted a prospective cohort study, based on the China Suboptimal Health Cohort Study (COACS), to understand the impact of SHS on the progress of T2DM. We examined associations between SHS and T2DM outcomes using multivariable logistic regression models and constructed predictive models for T2DM onset based on SHS.ResultsA total of 61 participants developed T2DM after an average of 3.1 years of follow-up. Participants with higher SHS scores had more T2DM outcomes (p = 0.036). Moreover, compared with the lowest quartile of SHS scores, participants with fourth, third, and second quartile SHS scores were found to be associated with a 1.7-fold, 1.6-fold, and 1.5-fold risk of developing T2DM, respectively. The predictive model constructed with SHS had higher discriminatory power (AUC = 0.848) than the model without SHS (AUC = 0.795).ConclusionsThe present study suggests that a higher SHS score is associated with a higher incidence of T2DM. SHS is a new independent risk factor for T2DM and has the capability to act as a predictive tool for T2DM onset. The evaluation of SHS combined with the analysis of modifiable risk factors for SHS allows the risk stratification of T2DM, which may consequently contribute to the prevention of T2DM development. These findings might require further validation in a longer-term follow-up study.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N137a4e1d7f55430dbb575468e1c7bd9d
    22 Nf3a761d9acd544b5bb4c757735278c60
    23 sg:journal.1042290
    24 schema:keywords China suboptimal health cohort study
    25 ConclusionsThe present study
    26 Health Cohort Study
    27 MethodsWe
    28 ResultsA total
    29 SHS score
    30 Suboptimal Health Cohort Study
    31 T2DM
    32 T2DM development
    33 T2DM onset
    34 T2DM outcomes
    35 analysis
    36 association
    37 average
    38 capability
    39 cohort
    40 cohort study
    41 community-based cohort
    42 development
    43 development of T2DM
    44 diabetes
    45 diabetes mellitus
    46 discriminatory power
    47 disease
    48 evaluation
    49 evaluation of SHS
    50 factors
    51 findings
    52 follow
    53 further validation
    54 global public health threat
    55 health
    56 health status
    57 health threat
    58 high discriminatory power
    59 high incidence
    60 higher SHS scores
    61 impact
    62 impact of SHS
    63 incidence
    64 independent risk factor
    65 logistic regression models
    66 long-term follow
    67 lowest quartile
    68 mellitus
    69 model
    70 modifiable risk factors
    71 more T2DM outcomes
    72 multivariable logistic regression models
    73 new independent risk factor
    74 onset
    75 outcomes
    76 participants
    77 physical state
    78 power
    79 predictive model
    80 predictive tool
    81 present study
    82 prevalence
    83 prevalence of diabetes
    84 prevention
    85 progress
    86 progress of T2DM
    87 progression
    88 prospective cohort study
    89 public health threat
    90 quartile
    91 quartile SHS scores
    92 regression models
    93 risk
    94 risk factors
    95 risk stratification
    96 scores
    97 second quartile SHS scores
    98 state
    99 status
    100 stratification
    101 study
    102 suboptimal health status
    103 threat
    104 tool
    105 total
    106 type 2 diabetes mellitus
    107 validation
    108 years
    109 schema:name Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study
    110 schema:pagination 65-72
    111 schema:productId N360aaeaad3364ebbabbef8ef226b74ec
    112 N56d48a8fbf4d442c95473bbfc10c116b
    113 Nbf3dc5a27168406c924e10d11700ae75
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111638611
    115 https://doi.org/10.1007/s13167-019-0159-9
    116 schema:sdDatePublished 2021-11-01T18:35
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher Naab15abe0d89494883ab2a6bc3446dd3
    119 schema:url https://doi.org/10.1007/s13167-019-0159-9
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N137a4e1d7f55430dbb575468e1c7bd9d schema:volumeNumber 10
    124 rdf:type schema:PublicationVolume
    125 N20e64eb38c7847a9bd155c8c597adfb2 rdf:first sg:person.0641462427.24
    126 rdf:rest N4aa924cc30ca4fffb38de4a2fc537260
    127 N30f59043e543408daaf68058ddea12ed rdf:first sg:person.013270644212.99
    128 rdf:rest N95e6c66acd7f4cdd8ec2cd8903ea1e77
    129 N360aaeaad3364ebbabbef8ef226b74ec schema:name doi
    130 schema:value 10.1007/s13167-019-0159-9
    131 rdf:type schema:PropertyValue
    132 N4aa924cc30ca4fffb38de4a2fc537260 rdf:first sg:person.0607015560.97
    133 rdf:rest Ned2e2cab1ee34e29882ca8ddb4ac3704
    134 N56d48a8fbf4d442c95473bbfc10c116b schema:name dimensions_id
    135 schema:value pub.1111638611
    136 rdf:type schema:PropertyValue
    137 N6fa7f082041f41c392d9660aabcff83b rdf:first sg:person.010733117037.22
    138 rdf:rest N20e64eb38c7847a9bd155c8c597adfb2
    139 N95e6c66acd7f4cdd8ec2cd8903ea1e77 rdf:first sg:person.0645173642.20
    140 rdf:rest Nbdb5009216934851b9741490ac6f7cd8
    141 Naab15abe0d89494883ab2a6bc3446dd3 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 Nbdb5009216934851b9741490ac6f7cd8 rdf:first sg:person.01206207226.81
    144 rdf:rest Nef157036b4f2453eb55194b1f166d468
    145 Nbe9b2f563efc40c5a0a3c506a5876171 rdf:first sg:person.01231574010.59
    146 rdf:rest Ne051b789b52e47cca70e709553c54532
    147 Nbf3dc5a27168406c924e10d11700ae75 schema:name pubmed_id
    148 schema:value 30984315
    149 rdf:type schema:PropertyValue
    150 Ncc43e1610e03472c8fb87b0290dfcaf9 rdf:first sg:person.01001117010.64
    151 rdf:rest N6fa7f082041f41c392d9660aabcff83b
    152 Ne051b789b52e47cca70e709553c54532 rdf:first sg:person.0622416310.94
    153 rdf:rest rdf:nil
    154 Ned2e2cab1ee34e29882ca8ddb4ac3704 rdf:first sg:person.01250640127.31
    155 rdf:rest Nf5fe4285629d4bde8339ca983a846af7
    156 Nef157036b4f2453eb55194b1f166d468 rdf:first sg:person.0744053330.67
    157 rdf:rest Nbe9b2f563efc40c5a0a3c506a5876171
    158 Nf3a761d9acd544b5bb4c757735278c60 schema:issueNumber 1
    159 rdf:type schema:PublicationIssue
    160 Nf5fe4285629d4bde8339ca983a846af7 rdf:first sg:person.013135626213.55
    161 rdf:rest N30f59043e543408daaf68058ddea12ed
    162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Medical and Health Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Clinical Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Public Health and Health Services
    170 rdf:type schema:DefinedTerm
    171 sg:grant.8361375 http://pending.schema.org/fundedItem sg:pub.10.1007/s13167-019-0159-9
    172 rdf:type schema:MonetaryGrant
    173 sg:grant.8371437 http://pending.schema.org/fundedItem sg:pub.10.1007/s13167-019-0159-9
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.8879210 http://pending.schema.org/fundedItem sg:pub.10.1007/s13167-019-0159-9
    176 rdf:type schema:MonetaryGrant
    177 sg:journal.1042290 schema:issn 1878-5077
    178 1878-5085
    179 schema:name EPMA Journal
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.01001117010.64 schema:affiliation grid-institutes:grid.411617.4
    183 schema:familyName Ge
    184 schema:givenName Siqi
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001117010.64
    186 rdf:type schema:Person
    187 sg:person.010733117037.22 schema:affiliation grid-institutes:grid.410638.8
    188 schema:familyName Xu
    189 schema:givenName Xizhu
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733117037.22
    191 rdf:type schema:Person
    192 sg:person.01206207226.81 schema:affiliation grid-institutes:grid.410638.8
    193 schema:familyName Li
    194 schema:givenName Dong
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206207226.81
    196 rdf:type schema:Person
    197 sg:person.01231574010.59 schema:affiliation grid-institutes:grid.1038.a
    198 schema:familyName Wang
    199 schema:givenName Youxin
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231574010.59
    201 rdf:type schema:Person
    202 sg:person.01250640127.31 schema:affiliation grid-institutes:grid.1038.a
    203 schema:familyName Wang
    204 schema:givenName Hao
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250640127.31
    206 rdf:type schema:Person
    207 sg:person.013135626213.55 schema:affiliation grid-institutes:grid.24696.3f
    208 schema:familyName Liu
    209 schema:givenName Di
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013135626213.55
    211 rdf:type schema:Person
    212 sg:person.013270644212.99 schema:affiliation grid-institutes:grid.24696.3f
    213 schema:familyName Zhang
    214 schema:givenName Xiaoyu
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270644212.99
    216 rdf:type schema:Person
    217 sg:person.0607015560.97 schema:affiliation grid-institutes:grid.410638.8
    218 schema:familyName Hou
    219 schema:givenName Haifeng
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607015560.97
    221 rdf:type schema:Person
    222 sg:person.0622416310.94 schema:affiliation grid-institutes:grid.1038.a
    223 schema:familyName Wang
    224 schema:givenName Wei
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622416310.94
    226 rdf:type schema:Person
    227 sg:person.0641462427.24 schema:affiliation grid-institutes:grid.24696.3f
    228 schema:familyName Zhang
    229 schema:givenName Jie
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641462427.24
    231 rdf:type schema:Person
    232 sg:person.0645173642.20 schema:affiliation grid-institutes:grid.1038.a
    233 schema:familyName Song
    234 schema:givenName Manshu
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645173642.20
    236 rdf:type schema:Person
    237 sg:person.0744053330.67 schema:affiliation grid-institutes:grid.24696.3f
    238 schema:familyName Zhou
    239 schema:givenName Yong
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744053330.67
    241 rdf:type schema:Person
    242 sg:pub.10.1007/s11524-011-9636-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039749048
    243 https://doi.org/10.1007/s11524-011-9636-8
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s13167-017-0119-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092271354
    246 https://doi.org/10.1007/s13167-017-0119-1
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s13167-018-0148-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106388444
    249 https://doi.org/10.1007/s13167-018-0148-4
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/s41598-017-15101-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092446450
    252 https://doi.org/10.1038/s41598-017-15101-5
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1741-7015-9-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016512016
    255 https://doi.org/10.1186/1741-7015-9-103
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1878-5085-5-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108126
    258 https://doi.org/10.1186/1878-5085-5-4
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/s12889-017-5002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100198405
    261 https://doi.org/10.1186/s12889-017-5002-4
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/s12967-014-0348-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022707368
    264 https://doi.org/10.1186/s12967-014-0348-1
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/s12967-016-1046-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016567684
    267 https://doi.org/10.1186/s12967-016-1046-y
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s13167-016-0068-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006663150
    270 https://doi.org/10.1186/s13167-016-0068-0
    271 rdf:type schema:CreativeWork
    272 grid-institutes:grid.1038.a schema:alternateName School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia
    273 schema:name Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China
    274 School of Medical and Health Sciences, Edith Cowan University, WA6027, Perth, Australia
    275 School of Public Health, Taishan Medical University, 271000, Taian, China
    276 rdf:type schema:Organization
    277 grid-institutes:grid.24696.3f schema:alternateName Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China
    278 Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
    279 schema:name Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China
    280 Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
    281 rdf:type schema:Organization
    282 grid-institutes:grid.410638.8 schema:alternateName School of Public Health, Taishan Medical University, 271000, Taian, China
    283 schema:name School of Public Health, Taishan Medical University, 271000, Taian, China
    284 rdf:type schema:Organization
    285 grid-institutes:grid.411617.4 schema:alternateName Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
    286 schema:name Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, 100069, Beijing, China
    287 Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...