Acceleration of shape optimization analysis using model order reduction by Karhunen-Loève expansion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-26

AUTHORS

Shuichi Tango, Hideyuki Azegami

ABSTRACT

This paper presents a method to reduce the computational time required to solve shape optimization problems. A volume minimization problem under the mean compliance constraint is chosen as an example of the shape optimization problem. To solve this problem, an iterative algorithm based on the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} gradient method is considered as a conventional approach. In this study, we attempt to use a method of model order reduction for solving the linear elasticity problem based on the idea by Karhunen-Loève expansion (KLE). We consider the displacements obtained by the conventional method to be sampling data of a random variable; the orthonormal bases of KLE are defined as eigenfunctions of the eigenvalue problem obtained as the optimality condition of the variance maximization problem for the random variable. The feasibility of the proposed method is illustrated by testing the numerical scheme to a linear elastic body of the connecting rod type. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00489-5

DOI

http://dx.doi.org/10.1007/s13160-021-00489-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142193471


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tango", 
        "givenName": "Shuichi", 
        "id": "sg:person.013563360610.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013563360610.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azegami", 
        "givenName": "Hideyuki", 
        "id": "sg:person.015573640751.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573640751.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-981-15-7618-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131334716", 
          "https://doi.org/10.1007/978-981-15-7618-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-018-1976-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103739338", 
          "https://doi.org/10.1007/s00158-018-1976-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-019-02485-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125020871", 
          "https://doi.org/10.1007/s00158-019-02485-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-015-0201-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026375908", 
          "https://doi.org/10.1007/s13160-015-0201-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-26", 
    "datePublishedReg": "2021-10-26", 
    "description": "This paper presents a method to reduce the computational time required to solve shape optimization problems. A volume minimization problem under the mean compliance constraint is chosen as an example of the shape optimization problem. To solve this problem, an iterative algorithm based on the H1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^1$$\\end{document} gradient method is considered as a conventional approach. In this study, we attempt to use a method of model order reduction for solving the linear elasticity problem based on the idea by Karhunen-Lo\u00e8ve expansion (KLE). We consider the displacements obtained by the conventional method to be sampling data of a random variable; the orthonormal bases of KLE are defined as eigenfunctions of the eigenvalue problem obtained as the optimality condition of the variance maximization problem for the random variable. The feasibility of the proposed method is illustrated by testing the numerical scheme to a linear elastic body of the connecting rod type.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-021-00489-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6830952", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Karhunen\u2013Lo\u00e8ve expansion", 
      "shape optimization problem", 
      "model order reduction", 
      "random variables", 
      "order reduction", 
      "optimization problem", 
      "volume minimization problem", 
      "linear elasticity problems", 
      "mean compliance constraints", 
      "shape optimization analysis", 
      "optimality conditions", 
      "numerical scheme", 
      "eigenvalue problem", 
      "linear elastic body", 
      "minimization problem", 
      "gradient method", 
      "elasticity problems", 
      "iterative algorithm", 
      "computational time", 
      "orthonormal basis", 
      "compliance constraints", 
      "maximization problem", 
      "elastic body", 
      "optimization analysis", 
      "problem", 
      "conventional approaches", 
      "eigenfunctions", 
      "conventional methods", 
      "variables", 
      "scheme", 
      "algorithm", 
      "constraints", 
      "expansion", 
      "acceleration", 
      "displacement", 
      "approach", 
      "idea", 
      "rod type", 
      "conditions", 
      "feasibility", 
      "analysis", 
      "basis", 
      "time", 
      "data", 
      "types", 
      "reduction", 
      "body", 
      "study", 
      "method", 
      "example", 
      "paper", 
      "variance maximization problem"
    ], 
    "name": "Acceleration of shape optimization analysis using model order reduction by Karhunen-Lo\u00e8ve expansion", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142193471"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-021-00489-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-021-00489-5", 
      "https://app.dimensions.ai/details/publication/pub.1142193471"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-021-00489-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00489-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00489-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00489-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00489-5'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      79 URIs      67 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00489-5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5d83efc7cf7648c39d692bc71430574a
4 schema:citation sg:pub.10.1007/978-981-15-7618-8
5 sg:pub.10.1007/s00158-018-1976-5
6 sg:pub.10.1007/s00158-019-02485-3
7 sg:pub.10.1007/s13160-015-0201-9
8 schema:datePublished 2021-10-26
9 schema:datePublishedReg 2021-10-26
10 schema:description This paper presents a method to reduce the computational time required to solve shape optimization problems. A volume minimization problem under the mean compliance constraint is chosen as an example of the shape optimization problem. To solve this problem, an iterative algorithm based on the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} gradient method is considered as a conventional approach. In this study, we attempt to use a method of model order reduction for solving the linear elasticity problem based on the idea by Karhunen-Loève expansion (KLE). We consider the displacements obtained by the conventional method to be sampling data of a random variable; the orthonormal bases of KLE are defined as eigenfunctions of the eigenvalue problem obtained as the optimality condition of the variance maximization problem for the random variable. The feasibility of the proposed method is illustrated by testing the numerical scheme to a linear elastic body of the connecting rod type.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1041814
15 schema:keywords Karhunen–Loève expansion
16 acceleration
17 algorithm
18 analysis
19 approach
20 basis
21 body
22 compliance constraints
23 computational time
24 conditions
25 constraints
26 conventional approaches
27 conventional methods
28 data
29 displacement
30 eigenfunctions
31 eigenvalue problem
32 elastic body
33 elasticity problems
34 example
35 expansion
36 feasibility
37 gradient method
38 idea
39 iterative algorithm
40 linear elastic body
41 linear elasticity problems
42 maximization problem
43 mean compliance constraints
44 method
45 minimization problem
46 model order reduction
47 numerical scheme
48 optimality conditions
49 optimization analysis
50 optimization problem
51 order reduction
52 orthonormal basis
53 paper
54 problem
55 random variables
56 reduction
57 rod type
58 scheme
59 shape optimization analysis
60 shape optimization problem
61 study
62 time
63 types
64 variables
65 variance maximization problem
66 volume minimization problem
67 schema:name Acceleration of shape optimization analysis using model order reduction by Karhunen-Loève expansion
68 schema:pagination 1-17
69 schema:productId Nb67dd18a5c0f491789da214e68ec6cc1
70 Necb44ae6edca41e58cfc3aaf39743255
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142193471
72 https://doi.org/10.1007/s13160-021-00489-5
73 schema:sdDatePublished 2022-01-01T18:59
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nf8921b00daf6451d8d54645ff9b658d2
76 schema:url https://doi.org/10.1007/s13160-021-00489-5
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N4711b1bcba874bea890f9d33dc4a5fca rdf:first sg:person.015573640751.54
81 rdf:rest rdf:nil
82 N5d83efc7cf7648c39d692bc71430574a rdf:first sg:person.013563360610.82
83 rdf:rest N4711b1bcba874bea890f9d33dc4a5fca
84 Nb67dd18a5c0f491789da214e68ec6cc1 schema:name doi
85 schema:value 10.1007/s13160-021-00489-5
86 rdf:type schema:PropertyValue
87 Necb44ae6edca41e58cfc3aaf39743255 schema:name dimensions_id
88 schema:value pub.1142193471
89 rdf:type schema:PropertyValue
90 Nf8921b00daf6451d8d54645ff9b658d2 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
96 schema:name Numerical and Computational Mathematics
97 rdf:type schema:DefinedTerm
98 sg:grant.6830952 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00489-5
99 rdf:type schema:MonetaryGrant
100 sg:journal.1041814 schema:issn 0916-7005
101 1868-937X
102 schema:name Japan Journal of Industrial and Applied Mathematics
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.013563360610.82 schema:affiliation grid-institutes:grid.27476.30
106 schema:familyName Tango
107 schema:givenName Shuichi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013563360610.82
109 rdf:type schema:Person
110 sg:person.015573640751.54 schema:affiliation grid-institutes:grid.27476.30
111 schema:familyName Azegami
112 schema:givenName Hideyuki
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573640751.54
114 rdf:type schema:Person
115 sg:pub.10.1007/978-981-15-7618-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131334716
116 https://doi.org/10.1007/978-981-15-7618-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00158-018-1976-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103739338
119 https://doi.org/10.1007/s00158-018-1976-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00158-019-02485-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125020871
122 https://doi.org/10.1007/s00158-019-02485-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s13160-015-0201-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026375908
125 https://doi.org/10.1007/s13160-015-0201-9
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.27476.30 schema:alternateName Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
128 schema:name Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...