A preconditioned general two-step modulus-based accelerated overrelaxation iteration method for nonlinear complementarity problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-23

AUTHORS

Jia-Lin Zhang, Guo-Feng Zhang, Zhao-Zheng Liang

ABSTRACT

In this paper, we propose a preconditioned general two-step modulus-based accelerated overrelaxation (MAOR) iteration method for solving a class of nonlinear complementarity problems. The convergence analysis and the condition of the iterative parameters are given when the system matrix is either positive definite or an H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{+}$$\end{document}-matrix. Numerical examples further illustrate that the proposed method is efficient and has better performance than some existing modulus-based iteration methods in aspects of the number of iteration steps and CPU time. More... »

PAGES

227-255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00486-8

DOI

http://dx.doi.org/10.1007/s13160-021-00486-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142099138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jia-Lin", 
        "id": "sg:person.012131475460.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131475460.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Guo-Feng", 
        "id": "sg:person.015025302151.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025302151.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Zhao-Zheng", 
        "id": "sg:person.012037400151.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037400151.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11075-018-0477-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100651092", 
          "https://doi.org/10.1007/s11075-018-0477-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01268170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017224378", 
          "https://doi.org/10.1007/bf01268170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-010-9416-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023147531", 
          "https://doi.org/10.1007/s11075-010-9416-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-016-0112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032751459", 
          "https://doi.org/10.1007/s11075-016-0112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9566-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007152545", 
          "https://doi.org/10.1007/s11075-012-9566-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01582255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032689642", 
          "https://doi.org/10.1007/bf01582255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-018-0646-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104016722", 
          "https://doi.org/10.1007/s40314-018-0646-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-23", 
    "datePublishedReg": "2021-10-23", 
    "description": "In this paper, we propose a preconditioned general two-step modulus-based accelerated overrelaxation (MAOR) iteration method for solving a class of nonlinear complementarity problems. The convergence analysis and the condition of the iterative parameters are given when the system matrix is either positive definite or an H+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H_{+}$$\\end{document}-matrix. Numerical examples further illustrate that the proposed method is efficient and has better performance than some existing modulus-based iteration methods in aspects of the number of iteration steps and CPU time.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-021-00486-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8892344", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132322", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "nonlinear complementarity problem", 
      "iteration method", 
      "complementarity problem", 
      "modulus-based iteration method", 
      "convergence analysis", 
      "system matrix", 
      "iterative parameters", 
      "numerical examples", 
      "iteration step", 
      "CPU time", 
      "problem", 
      "matrix", 
      "better performance", 
      "class", 
      "parameters", 
      "number", 
      "performance", 
      "conditions", 
      "step", 
      "analysis", 
      "time", 
      "aspects", 
      "method", 
      "example", 
      "paper"
    ], 
    "name": "A preconditioned general two-step modulus-based accelerated overrelaxation iteration method for nonlinear complementarity problems", 
    "pagination": "227-255", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142099138"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-021-00486-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-021-00486-8", 
      "https://app.dimensions.ai/details/publication/pub.1142099138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-021-00486-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00486-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00486-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00486-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00486-8'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      57 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00486-8 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ned7bca6aeb2c4c3fb8d759439df10f10
4 schema:citation sg:pub.10.1007/bf01268170
5 sg:pub.10.1007/bf01582255
6 sg:pub.10.1007/s11075-010-9416-7
7 sg:pub.10.1007/s11075-012-9566-x
8 sg:pub.10.1007/s11075-016-0112-0
9 sg:pub.10.1007/s11075-018-0477-3
10 sg:pub.10.1007/s40314-018-0646-y
11 schema:datePublished 2021-10-23
12 schema:datePublishedReg 2021-10-23
13 schema:description In this paper, we propose a preconditioned general two-step modulus-based accelerated overrelaxation (MAOR) iteration method for solving a class of nonlinear complementarity problems. The convergence analysis and the condition of the iterative parameters are given when the system matrix is either positive definite or an H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{+}$$\end{document}-matrix. Numerical examples further illustrate that the proposed method is efficient and has better performance than some existing modulus-based iteration methods in aspects of the number of iteration steps and CPU time.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N860e1f5d2c3f49059a582bf6e9724103
18 Nfb2535d0d842447a8f59b07a198712c4
19 sg:journal.1041814
20 schema:keywords CPU time
21 analysis
22 aspects
23 better performance
24 class
25 complementarity problem
26 conditions
27 convergence analysis
28 example
29 iteration method
30 iteration step
31 iterative parameters
32 matrix
33 method
34 modulus-based iteration method
35 nonlinear complementarity problem
36 number
37 numerical examples
38 paper
39 parameters
40 performance
41 problem
42 step
43 system matrix
44 time
45 schema:name A preconditioned general two-step modulus-based accelerated overrelaxation iteration method for nonlinear complementarity problems
46 schema:pagination 227-255
47 schema:productId N73f4928aa2b44fee9c07054f9060e891
48 Na7ca38ff38aa40df90476751f78e1975
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142099138
50 https://doi.org/10.1007/s13160-021-00486-8
51 schema:sdDatePublished 2022-05-20T07:39
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N98587813275e4a1f819a02547fdfad33
54 schema:url https://doi.org/10.1007/s13160-021-00486-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N73f4928aa2b44fee9c07054f9060e891 schema:name doi
59 schema:value 10.1007/s13160-021-00486-8
60 rdf:type schema:PropertyValue
61 N860e1f5d2c3f49059a582bf6e9724103 schema:volumeNumber 39
62 rdf:type schema:PublicationVolume
63 N98587813275e4a1f819a02547fdfad33 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Na7ca38ff38aa40df90476751f78e1975 schema:name dimensions_id
66 schema:value pub.1142099138
67 rdf:type schema:PropertyValue
68 Nc59539285f0847c58ed4b071755eafcc rdf:first sg:person.012037400151.51
69 rdf:rest rdf:nil
70 Nda9b8355fd824ca18e737c20e8982fb0 rdf:first sg:person.015025302151.50
71 rdf:rest Nc59539285f0847c58ed4b071755eafcc
72 Ned7bca6aeb2c4c3fb8d759439df10f10 rdf:first sg:person.012131475460.43
73 rdf:rest Nda9b8355fd824ca18e737c20e8982fb0
74 Nfb2535d0d842447a8f59b07a198712c4 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:grant.8132322 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00486-8
83 rdf:type schema:MonetaryGrant
84 sg:grant.8892344 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00486-8
85 rdf:type schema:MonetaryGrant
86 sg:journal.1041814 schema:issn 0916-7005
87 1868-937X
88 schema:name Japan Journal of Industrial and Applied Mathematics
89 schema:publisher Springer Nature
90 rdf:type schema:Periodical
91 sg:person.012037400151.51 schema:affiliation grid-institutes:grid.32566.34
92 schema:familyName Liang
93 schema:givenName Zhao-Zheng
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037400151.51
95 rdf:type schema:Person
96 sg:person.012131475460.43 schema:affiliation grid-institutes:grid.32566.34
97 schema:familyName Zhang
98 schema:givenName Jia-Lin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131475460.43
100 rdf:type schema:Person
101 sg:person.015025302151.50 schema:affiliation grid-institutes:grid.32566.34
102 schema:familyName Zhang
103 schema:givenName Guo-Feng
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015025302151.50
105 rdf:type schema:Person
106 sg:pub.10.1007/bf01268170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017224378
107 https://doi.org/10.1007/bf01268170
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01582255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032689642
110 https://doi.org/10.1007/bf01582255
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11075-010-9416-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023147531
113 https://doi.org/10.1007/s11075-010-9416-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11075-012-9566-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007152545
116 https://doi.org/10.1007/s11075-012-9566-x
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11075-016-0112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032751459
119 https://doi.org/10.1007/s11075-016-0112-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11075-018-0477-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100651092
122 https://doi.org/10.1007/s11075-018-0477-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s40314-018-0646-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104016722
125 https://doi.org/10.1007/s40314-018-0646-y
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.32566.34 schema:alternateName School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People’s Republic of China
128 schema:name School of Mathematics and Statistics, Lanzhou University of China, 730000, Lanzhou, People’s Republic of China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...