Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schrödinger equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-11

AUTHORS

Kazuyuki Yagasaki, Shotaro Yamazoe

ABSTRACT

We numerically study solitary waves in the coupled nonlinear Schrödinger equations. We detect pitchfork bifurcations of the fundamental solitary wave and compute eigenvalues and eigenfunctions of the corresponding eigenvalue problems to determine the spectral stability of solitary waves born at the pitchfork bifurcations. Our numerical results demonstrate the theoretical ones which the authors obtained recently. We also compute generalized eigenfunctions associated with the zero eigenvalue for the bifurcated solitary wave exhibiting a saddle-node bifurcation, and show that it does not change its stability type at the saddle-node bifurcation point. More... »

PAGES

1-25

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00485-9

DOI

http://dx.doi.org/10.1007/s13160-021-00485-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141790759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yagasaki", 
        "givenName": "Kazuyuki", 
        "id": "sg:person.014316720375.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316720375.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.I. Systems Research Institute Co., Ltd., 4 Yoshida-Ushinomiya, Sakyo-ku, 606-8302, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan", 
            "A.I. Systems Research Institute Co., Ltd., 4 Yoshida-Ushinomiya, Sakyo-ku, 606-8302, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazoe", 
        "givenName": "Shotaro", 
        "id": "sg:person.013045440157.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045440157.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13160-020-00428-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129147646", 
          "https://doi.org/10.1007/s13160-020-00428-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6995-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010396793", 
          "https://doi.org/10.1007/978-1-4614-6995-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-11", 
    "datePublishedReg": "2021-10-11", 
    "description": "We numerically study solitary waves in the coupled nonlinear Schr\u00f6dinger equations. We detect pitchfork bifurcations of the fundamental solitary wave and compute eigenvalues and eigenfunctions of the corresponding eigenvalue problems to determine the spectral stability of solitary waves born at the pitchfork bifurcations. Our numerical results demonstrate the theoretical ones which the authors obtained recently. We also compute generalized eigenfunctions associated with the zero eigenvalue for the bifurcated solitary wave exhibiting a saddle-node bifurcation, and show that it does not change its stability type at the saddle-node bifurcation point.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-021-00485-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6820891", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "solitary waves", 
      "Schr\u00f6dinger equation", 
      "pitchfork bifurcation", 
      "fundamental solitary waves", 
      "saddle-node bifurcation point", 
      "spectral stability", 
      "saddle-node bifurcation", 
      "generalized eigenfunctions", 
      "eigenvalue problem", 
      "numerical computations", 
      "stability type", 
      "bifurcation point", 
      "numerical results", 
      "bifurcation", 
      "eigenvalues", 
      "eigenfunctions", 
      "equations", 
      "theoretical ones", 
      "waves", 
      "computation", 
      "problem", 
      "stability", 
      "point", 
      "one", 
      "results", 
      "types", 
      "authors", 
      "compute eigenvalues"
    ], 
    "name": "Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schr\u00f6dinger equations", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141790759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-021-00485-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-021-00485-9", 
      "https://app.dimensions.ai/details/publication/pub.1141790759"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-021-00485-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00485-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00485-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00485-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00485-9'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      22 PREDICATES      53 URIs      43 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00485-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfa01e95f99424463a5211ca855c9d796
4 schema:citation sg:pub.10.1007/978-1-4614-6995-7
5 sg:pub.10.1007/s13160-020-00428-w
6 schema:datePublished 2021-10-11
7 schema:datePublishedReg 2021-10-11
8 schema:description We numerically study solitary waves in the coupled nonlinear Schrödinger equations. We detect pitchfork bifurcations of the fundamental solitary wave and compute eigenvalues and eigenfunctions of the corresponding eigenvalue problems to determine the spectral stability of solitary waves born at the pitchfork bifurcations. Our numerical results demonstrate the theoretical ones which the authors obtained recently. We also compute generalized eigenfunctions associated with the zero eigenvalue for the bifurcated solitary wave exhibiting a saddle-node bifurcation, and show that it does not change its stability type at the saddle-node bifurcation point.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf sg:journal.1041814
13 schema:keywords Schrödinger equation
14 authors
15 bifurcation
16 bifurcation point
17 computation
18 compute eigenvalues
19 eigenfunctions
20 eigenvalue problem
21 eigenvalues
22 equations
23 fundamental solitary waves
24 generalized eigenfunctions
25 numerical computations
26 numerical results
27 one
28 pitchfork bifurcation
29 point
30 problem
31 results
32 saddle-node bifurcation
33 saddle-node bifurcation point
34 solitary waves
35 spectral stability
36 stability
37 stability type
38 theoretical ones
39 types
40 waves
41 schema:name Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schrödinger equations
42 schema:pagination 1-25
43 schema:productId N3aad157cdfbf4c2f96d818e43610a50b
44 N99e3446dbc214cad9760498cb988428c
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141790759
46 https://doi.org/10.1007/s13160-021-00485-9
47 schema:sdDatePublished 2022-01-01T18:58
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Na0198fc99b6148fa835075b396375c40
50 schema:url https://doi.org/10.1007/s13160-021-00485-9
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N3aad157cdfbf4c2f96d818e43610a50b schema:name doi
55 schema:value 10.1007/s13160-021-00485-9
56 rdf:type schema:PropertyValue
57 N99e3446dbc214cad9760498cb988428c schema:name dimensions_id
58 schema:value pub.1141790759
59 rdf:type schema:PropertyValue
60 Na0198fc99b6148fa835075b396375c40 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Na6437a9fb29d4c7eba572d0e76a1cbb4 rdf:first sg:person.013045440157.29
63 rdf:rest rdf:nil
64 Nfa01e95f99424463a5211ca855c9d796 rdf:first sg:person.014316720375.41
65 rdf:rest Na6437a9fb29d4c7eba572d0e76a1cbb4
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:grant.6820891 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00485-9
73 rdf:type schema:MonetaryGrant
74 sg:journal.1041814 schema:issn 0916-7005
75 1868-937X
76 schema:name Japan Journal of Industrial and Applied Mathematics
77 schema:publisher Springer Nature
78 rdf:type schema:Periodical
79 sg:person.013045440157.29 schema:affiliation grid-institutes:None
80 schema:familyName Yamazoe
81 schema:givenName Shotaro
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045440157.29
83 rdf:type schema:Person
84 sg:person.014316720375.41 schema:affiliation grid-institutes:grid.258799.8
85 schema:familyName Yagasaki
86 schema:givenName Kazuyuki
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316720375.41
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4614-6995-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010396793
90 https://doi.org/10.1007/978-1-4614-6995-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s13160-020-00428-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1129147646
93 https://doi.org/10.1007/s13160-020-00428-w
94 rdf:type schema:CreativeWork
95 grid-institutes:None schema:alternateName A.I. Systems Research Institute Co., Ltd., 4 Yoshida-Ushinomiya, Sakyo-ku, 606-8302, Kyoto, Japan
96 schema:name A.I. Systems Research Institute Co., Ltd., 4 Yoshida-Ushinomiya, Sakyo-ku, 606-8302, Kyoto, Japan
97 Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan
98 rdf:type schema:Organization
99 grid-institutes:grid.258799.8 schema:alternateName Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan
100 schema:name Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...