Structural reliability under uncertainty in moments: distributionally-robust reliability-based design optimization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-14

AUTHORS

Yoshihiro Kanno

ABSTRACT

This study considers structural optimization under a reliability constraint, in which the input distribution is only partially known. Specifically, when it is only known that the expected value vector and the variance-covariance matrix of the input distribution belong to a given convex set, it is required that the failure probability of a structure should be no greater than a specified target value for any realization of the input distribution. We demonstrate that this distributionally-robust reliability constraint can be reduced equivalently to deterministic constraints. By using this reduction, we can handle a reliability-based design optimization problem under the distributionally-robust reliability constraint within the framework of deterministic optimization; in particular, nonlinear semidefinite programming. Two numerical examples are solved to demonstrate the relation between the optimal value and either the target reliability or the uncertainty magnitude. More... »

PAGES

1-32

References to SciGraph publications

  • 2018-01-30. Conservative reliability index for epistemic uncertainty in reliability-based design optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-08-17. Relaxed performance measure approach for reliability-based design optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2012. Handbook on Semidefinite, Conic and Polynomial Optimization in NONE
  • 2015-06-30. Worst-case topology optimization of self-weight loaded structures using semi-definite programming in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2020-03-13. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2010-05-29. A survey on approaches for reliability-based optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-02-19. Review of Robust Aerodynamic Design Optimization for Air Vehicles in ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING
  • 2011-01-27. Reliability-based design optimization with confidence level under input model uncertainty due to limited test data in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019-06-11. Reliability measure approach for confidence-based design optimization under insufficient input data in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2007-12-04. Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-06-06. Conservative reliability-based design optimization method with insufficient input data in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2008-01-01. Graph Implementations for Nonsmooth Convex Programs in RECENT ADVANCES IN LEARNING AND CONTROL
  • 2018-06-09. Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • 2020-07-10. An active learning Kriging-assisted method for reliability-based design optimization under distributional probability-box model in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2018-01-16. Confidence-based reliability assessment considering limited numbers of both input and output test data in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019-05-11. Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2009-08-07. Benchmark study of numerical methods for reliability-based design optimization in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2016-07-08. Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2019-02-01. A data-driven approach to non-parametric reliability-based design optimization of structures with uncertain load in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2006-11-10. Sequential Semidefinite Program for Maximum Robustness Design of Structures under Load Uncertainty in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13160-021-00483-x

    DOI

    http://dx.doi.org/10.1007/s13160-021-00483-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141119580


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematics and Informatics Center, The University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Mathematics and Informatics Center, The University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kanno", 
            "givenName": "Yoshihiro", 
            "id": "sg:person.010544655271.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544655271.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00158-018-1903-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100711655", 
              "https://doi.org/10.1007/s00158-018-1903-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-155-8_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030484688", 
              "https://doi.org/10.1007/978-1-84800-155-8_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02503-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125630837", 
              "https://doi.org/10.1007/s00158-020-02503-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-018-1900-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424396", 
              "https://doi.org/10.1007/s00158-018-1900-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1532-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012136688", 
              "https://doi.org/10.1007/s00158-016-1532-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1492-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011682615", 
              "https://doi.org/10.1007/s00158-016-1492-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02290-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114114676", 
              "https://doi.org/10.1007/s00158-019-02290-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-007-0202-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033383328", 
              "https://doi.org/10.1007/s00158-007-0202-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11831-018-9259-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101105039", 
              "https://doi.org/10.1007/s11831-018-9259-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02199-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111842473", 
              "https://doi.org/10.1007/s00158-019-02199-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-015-1285-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048251297", 
              "https://doi.org/10.1007/s00158-015-1285-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-009-0412-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018507742", 
              "https://doi.org/10.1007/s00158-009-0412-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-011-0620-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001037039", 
              "https://doi.org/10.1007/s00158-011-0620-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1561-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043036883", 
              "https://doi.org/10.1007/s00158-016-1561-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-010-0518-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045055905", 
              "https://doi.org/10.1007/s00158-010-0518-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-0769-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010074517", 
              "https://doi.org/10.1007/978-1-4614-0769-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-020-02604-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129152438", 
              "https://doi.org/10.1007/s00158-020-02604-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-019-02299-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117044632", 
              "https://doi.org/10.1007/s00158-019-02299-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-006-9102-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050916127", 
              "https://doi.org/10.1007/s10957-006-9102-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-018-0013-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104491999", 
              "https://doi.org/10.1007/s10589-018-0013-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-14", 
        "datePublishedReg": "2021-09-14", 
        "description": "This study considers structural optimization under a reliability constraint, in which the input distribution is only partially known. Specifically, when it is only known that the expected value vector and the variance-covariance matrix of the input distribution belong to a given convex set, it is required that the failure probability of a structure should be no greater than a specified target value for any realization of the input distribution. We demonstrate that this distributionally-robust reliability constraint can be reduced equivalently to deterministic constraints. By using this reduction, we can handle a reliability-based design optimization problem under the distributionally-robust reliability constraint within the framework of deterministic optimization; in particular, nonlinear semidefinite programming. Two numerical examples are solved to demonstrate the relation between the optimal value and either the target reliability or the uncertainty magnitude.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13160-021-00483-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9679432", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6832349", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041814", 
            "issn": [
              "0916-7005", 
              "1868-937X"
            ], 
            "name": "Japan Journal of Industrial and Applied Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "reliability constraints", 
          "reliability-based design optimization problems", 
          "input distribution", 
          "reliability-based design optimization", 
          "design optimization problems", 
          "nonlinear semidefinite programming", 
          "variance-covariance matrix", 
          "deterministic optimization", 
          "optimization problem", 
          "deterministic constraints", 
          "semidefinite programming", 
          "convex sets", 
          "numerical examples", 
          "uncertainty magnitude", 
          "design optimization", 
          "structural optimization", 
          "failure probability", 
          "optimal value", 
          "optimization", 
          "structural reliability", 
          "target reliability", 
          "value vector", 
          "constraints", 
          "target values", 
          "distribution", 
          "uncertainty", 
          "moment", 
          "probability", 
          "problem", 
          "programming", 
          "matrix", 
          "realization", 
          "set", 
          "reliability", 
          "vector", 
          "framework", 
          "values", 
          "structure", 
          "magnitude", 
          "relation", 
          "reduction", 
          "example", 
          "study", 
          "robust reliability constraint", 
          "robust reliability-based design optimization"
        ], 
        "name": "Structural reliability under uncertainty in moments: distributionally-robust reliability-based design optimization", 
        "pagination": "1-32", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141119580"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13160-021-00483-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13160-021-00483-x", 
          "https://app.dimensions.ai/details/publication/pub.1141119580"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13160-021-00483-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00483-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00483-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00483-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00483-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      22 PREDICATES      88 URIs      60 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13160-021-00483-x schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N75f9137fda65428e9bb88670e0c29323
    4 schema:citation sg:pub.10.1007/978-1-4614-0769-0
    5 sg:pub.10.1007/978-1-84800-155-8_7
    6 sg:pub.10.1007/s00158-007-0202-7
    7 sg:pub.10.1007/s00158-009-0412-2
    8 sg:pub.10.1007/s00158-010-0518-6
    9 sg:pub.10.1007/s00158-011-0620-4
    10 sg:pub.10.1007/s00158-015-1285-1
    11 sg:pub.10.1007/s00158-016-1492-4
    12 sg:pub.10.1007/s00158-016-1532-0
    13 sg:pub.10.1007/s00158-016-1561-8
    14 sg:pub.10.1007/s00158-018-1900-z
    15 sg:pub.10.1007/s00158-018-1903-9
    16 sg:pub.10.1007/s00158-019-02199-6
    17 sg:pub.10.1007/s00158-019-02290-y
    18 sg:pub.10.1007/s00158-019-02299-3
    19 sg:pub.10.1007/s00158-020-02503-9
    20 sg:pub.10.1007/s00158-020-02604-5
    21 sg:pub.10.1007/s10589-018-0013-3
    22 sg:pub.10.1007/s10957-006-9102-z
    23 sg:pub.10.1007/s11831-018-9259-2
    24 schema:datePublished 2021-09-14
    25 schema:datePublishedReg 2021-09-14
    26 schema:description This study considers structural optimization under a reliability constraint, in which the input distribution is only partially known. Specifically, when it is only known that the expected value vector and the variance-covariance matrix of the input distribution belong to a given convex set, it is required that the failure probability of a structure should be no greater than a specified target value for any realization of the input distribution. We demonstrate that this distributionally-robust reliability constraint can be reduced equivalently to deterministic constraints. By using this reduction, we can handle a reliability-based design optimization problem under the distributionally-robust reliability constraint within the framework of deterministic optimization; in particular, nonlinear semidefinite programming. Two numerical examples are solved to demonstrate the relation between the optimal value and either the target reliability or the uncertainty magnitude.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf sg:journal.1041814
    31 schema:keywords constraints
    32 convex sets
    33 design optimization
    34 design optimization problems
    35 deterministic constraints
    36 deterministic optimization
    37 distribution
    38 example
    39 failure probability
    40 framework
    41 input distribution
    42 magnitude
    43 matrix
    44 moment
    45 nonlinear semidefinite programming
    46 numerical examples
    47 optimal value
    48 optimization
    49 optimization problem
    50 probability
    51 problem
    52 programming
    53 realization
    54 reduction
    55 relation
    56 reliability
    57 reliability constraints
    58 reliability-based design optimization
    59 reliability-based design optimization problems
    60 robust reliability constraint
    61 robust reliability-based design optimization
    62 semidefinite programming
    63 set
    64 structural optimization
    65 structural reliability
    66 structure
    67 study
    68 target reliability
    69 target values
    70 uncertainty
    71 uncertainty magnitude
    72 value vector
    73 values
    74 variance-covariance matrix
    75 vector
    76 schema:name Structural reliability under uncertainty in moments: distributionally-robust reliability-based design optimization
    77 schema:pagination 1-32
    78 schema:productId N3829c1e83d044fcfa735cfa4ccc3e946
    79 N47e4c9c6894a4aea98697b2d7b9a0ce0
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141119580
    81 https://doi.org/10.1007/s13160-021-00483-x
    82 schema:sdDatePublished 2022-01-01T19:01
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N5738b1a488b24f2d80d792179a1de0cc
    85 schema:url https://doi.org/10.1007/s13160-021-00483-x
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N3829c1e83d044fcfa735cfa4ccc3e946 schema:name dimensions_id
    90 schema:value pub.1141119580
    91 rdf:type schema:PropertyValue
    92 N47e4c9c6894a4aea98697b2d7b9a0ce0 schema:name doi
    93 schema:value 10.1007/s13160-021-00483-x
    94 rdf:type schema:PropertyValue
    95 N5738b1a488b24f2d80d792179a1de0cc schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N75f9137fda65428e9bb88670e0c29323 rdf:first sg:person.010544655271.06
    98 rdf:rest rdf:nil
    99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Engineering
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Civil Engineering
    104 rdf:type schema:DefinedTerm
    105 sg:grant.6832349 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00483-x
    106 rdf:type schema:MonetaryGrant
    107 sg:grant.9679432 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00483-x
    108 rdf:type schema:MonetaryGrant
    109 sg:journal.1041814 schema:issn 0916-7005
    110 1868-937X
    111 schema:name Japan Journal of Industrial and Applied Mathematics
    112 schema:publisher Springer Nature
    113 rdf:type schema:Periodical
    114 sg:person.010544655271.06 schema:affiliation grid-institutes:grid.26999.3d
    115 schema:familyName Kanno
    116 schema:givenName Yoshihiro
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544655271.06
    118 rdf:type schema:Person
    119 sg:pub.10.1007/978-1-4614-0769-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010074517
    120 https://doi.org/10.1007/978-1-4614-0769-0
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-1-84800-155-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030484688
    123 https://doi.org/10.1007/978-1-84800-155-8_7
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00158-007-0202-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033383328
    126 https://doi.org/10.1007/s00158-007-0202-7
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00158-009-0412-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507742
    129 https://doi.org/10.1007/s00158-009-0412-2
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00158-010-0518-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045055905
    132 https://doi.org/10.1007/s00158-010-0518-6
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00158-011-0620-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001037039
    135 https://doi.org/10.1007/s00158-011-0620-4
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00158-015-1285-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048251297
    138 https://doi.org/10.1007/s00158-015-1285-1
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00158-016-1492-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011682615
    141 https://doi.org/10.1007/s00158-016-1492-4
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00158-016-1532-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012136688
    144 https://doi.org/10.1007/s00158-016-1532-0
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00158-016-1561-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043036883
    147 https://doi.org/10.1007/s00158-016-1561-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00158-018-1900-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424396
    150 https://doi.org/10.1007/s00158-018-1900-z
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s00158-018-1903-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100711655
    153 https://doi.org/10.1007/s00158-018-1903-9
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s00158-019-02199-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111842473
    156 https://doi.org/10.1007/s00158-019-02199-6
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00158-019-02290-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1114114676
    159 https://doi.org/10.1007/s00158-019-02290-y
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00158-019-02299-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117044632
    162 https://doi.org/10.1007/s00158-019-02299-3
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00158-020-02503-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125630837
    165 https://doi.org/10.1007/s00158-020-02503-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00158-020-02604-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129152438
    168 https://doi.org/10.1007/s00158-020-02604-5
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10589-018-0013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104491999
    171 https://doi.org/10.1007/s10589-018-0013-3
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10957-006-9102-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050916127
    174 https://doi.org/10.1007/s10957-006-9102-z
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11831-018-9259-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101105039
    177 https://doi.org/10.1007/s11831-018-9259-2
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.26999.3d schema:alternateName Mathematics and Informatics Center, The University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan
    180 schema:name Mathematics and Informatics Center, The University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...