A new two-parameter iteration method for indefinite complex symmetric linear systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-09

AUTHORS

Maeddeh Pourbagher, Davod Khojasteh Salkuyeh

ABSTRACT

We present a new iteration method, namely symmetric positive definite and negative stable splitting (SNSS) method for solving complex symmetric indefinite linear systems. Theoretical analysis shows that the proposed method is convergent under suitable conditions. In each iteration of the method two subsystems should be solved. One of them can be solved inexactly using the conjugate gradient method, and the second one by the Chebyshev acceleration method in conjunction with the well-known PRESB preconditioner. Numerical experiments are reported to indicate efficiency of the SNSS method. More... »

PAGES

1-19

References to SciGraph publications

  • 2016-12-13. Modified complex-symmetric and skew-Hermitian splitting iteration method for a class of complex-symmetric indefinite linear systems in NUMERICAL ALGORITHMS
  • 2018-12-13. A new version of a preconditioning method for certain two-by-two block matrices with square blocks in BIT NUMERICAL MATHEMATICS
  • 2021-04-24. Modified two-step scale-splitting iteration method for solving complex symmetric linear systems in COMPUTATIONAL AND APPLIED MATHEMATICS
  • 2015-08-05. Two Efficient Inexact Algorithms for a Class of Large Sparse Complex Linear Systems in MEDITERRANEAN JOURNAL OF MATHEMATICS
  • 2016-03-22. A new iterative method for solving a class of complex symmetric system of linear equations in NUMERICAL ALGORITHMS
  • 2010-02-04. Modified HSS iteration methods for a class of complex symmetric linear systems in COMPUTING
  • 2014-01-29. A parameterized splitting iteration method for complex symmetric linear systems in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
  • 2021-05-05. A preconditioner based on a splitting-type iteration method for solving complex symmetric indefinite linear systems in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
  • 2018-02-10. Two-parameter TSCSP method for solving complex symmetric system of linear equations in CALCOLO
  • 2020-06-22. A new double-step splitting iteration method for certain block two-by-two linear systems in COMPUTATIONAL AND APPLIED MATHEMATICS
  • 2011-01-06. On preconditioned MHSS iteration methods for complex symmetric linear systems in NUMERICAL ALGORITHMS
  • 2020-11-04. On preconditioned Euler-extrapolated single-step Hermitian and skew-Hermitian splitting method for complex symmetric linear systems in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
  • 2013-09-07. A comparison of iterative methods to solve complex valued linear algebraic systems in NUMERICAL ALGORITHMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13160-021-00479-7

    DOI

    http://dx.doi.org/10.1007/s13160-021-00479-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140292964


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411872.9", 
              "name": [
                "Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pourbagher", 
            "givenName": "Maeddeh", 
            "id": "sg:person.014044542743.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044542743.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan, Rasht, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411872.9", 
              "name": [
                "Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran", 
                "Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan, Rasht, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salkuyeh", 
            "givenName": "Davod Khojasteh", 
            "id": "sg:person.013037276477.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013037276477.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11075-016-0123-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006823740", 
              "https://doi.org/10.1007/s11075-016-0123-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00009-015-0621-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034618962", 
              "https://doi.org/10.1007/s00009-015-0621-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13160-020-00447-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132325885", 
              "https://doi.org/10.1007/s13160-020-00447-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-016-0245-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010110682", 
              "https://doi.org/10.1007/s11075-016-0245-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00607-010-0077-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017414725", 
              "https://doi.org/10.1007/s00607-010-0077-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40314-020-01220-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128674105", 
              "https://doi.org/10.1007/s40314-020-01220-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13160-021-00471-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137770095", 
              "https://doi.org/10.1007/s13160-021-00471-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-013-9764-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001845485", 
              "https://doi.org/10.1007/s11075-013-9764-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13160-014-0140-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011663719", 
              "https://doi.org/10.1007/s13160-014-0140-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10543-018-0741-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110580234", 
              "https://doi.org/10.1007/s10543-018-0741-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40314-021-01514-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137464933", 
              "https://doi.org/10.1007/s40314-021-01514-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-010-9441-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026284088", 
              "https://doi.org/10.1007/s11075-010-9441-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10092-018-0252-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100960877", 
              "https://doi.org/10.1007/s10092-018-0252-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-09", 
        "datePublishedReg": "2021-08-09", 
        "description": "We present a new iteration method, namely symmetric positive definite and negative stable splitting (SNSS) method for solving complex symmetric indefinite linear systems. Theoretical analysis shows that the proposed method is convergent under suitable conditions. In each iteration of the method two subsystems should be solved. One of them can be solved inexactly using the conjugate gradient method, and the second one by the Chebyshev acceleration method in conjunction with the well-known PRESB preconditioner. Numerical experiments are reported to indicate efficiency of the SNSS method.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13160-021-00479-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041814", 
            "issn": [
              "0916-7005", 
              "1868-937X"
            ], 
            "name": "Japan Journal of Industrial and Applied Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "linear systems", 
          "iteration method", 
          "complex symmetric indefinite linear systems", 
          "complex symmetric linear systems", 
          "symmetric indefinite linear systems", 
          "symmetric linear systems", 
          "indefinite linear systems", 
          "Chebyshev acceleration method", 
          "new iteration method", 
          "conjugate gradient method", 
          "splitting method", 
          "numerical experiments", 
          "gradient method", 
          "acceleration method", 
          "two-subsystem", 
          "theoretical analysis", 
          "suitable conditions", 
          "preconditioner", 
          "iteration", 
          "subsystems", 
          "convergent", 
          "system", 
          "efficiency", 
          "conjunction", 
          "conditions", 
          "experiments", 
          "analysis", 
          "method", 
          "negative stable splitting (SNSS) method", 
          "stable splitting (SNSS) method", 
          "method two subsystems", 
          "PRESB preconditioner", 
          "SNSS method", 
          "two-parameter iteration method", 
          "indefinite complex symmetric linear systems"
        ], 
        "name": "A new two-parameter iteration method for indefinite complex symmetric linear systems", 
        "pagination": "1-19", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140292964"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13160-021-00479-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13160-021-00479-7", 
          "https://app.dimensions.ai/details/publication/pub.1140292964"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_876.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13160-021-00479-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00479-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00479-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00479-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00479-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      22 PREDICATES      71 URIs      50 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13160-021-00479-7 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N8abd07ddc5dd49f69592314c6e624e94
    4 schema:citation sg:pub.10.1007/s00009-015-0621-4
    5 sg:pub.10.1007/s00607-010-0077-0
    6 sg:pub.10.1007/s10092-018-0252-9
    7 sg:pub.10.1007/s10543-018-0741-x
    8 sg:pub.10.1007/s11075-010-9441-6
    9 sg:pub.10.1007/s11075-013-9764-1
    10 sg:pub.10.1007/s11075-016-0123-x
    11 sg:pub.10.1007/s11075-016-0245-1
    12 sg:pub.10.1007/s13160-014-0140-x
    13 sg:pub.10.1007/s13160-020-00447-7
    14 sg:pub.10.1007/s13160-021-00471-1
    15 sg:pub.10.1007/s40314-020-01220-9
    16 sg:pub.10.1007/s40314-021-01514-6
    17 schema:datePublished 2021-08-09
    18 schema:datePublishedReg 2021-08-09
    19 schema:description We present a new iteration method, namely symmetric positive definite and negative stable splitting (SNSS) method for solving complex symmetric indefinite linear systems. Theoretical analysis shows that the proposed method is convergent under suitable conditions. In each iteration of the method two subsystems should be solved. One of them can be solved inexactly using the conjugate gradient method, and the second one by the Chebyshev acceleration method in conjunction with the well-known PRESB preconditioner. Numerical experiments are reported to indicate efficiency of the SNSS method.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf sg:journal.1041814
    24 schema:keywords Chebyshev acceleration method
    25 PRESB preconditioner
    26 SNSS method
    27 acceleration method
    28 analysis
    29 complex symmetric indefinite linear systems
    30 complex symmetric linear systems
    31 conditions
    32 conjugate gradient method
    33 conjunction
    34 convergent
    35 efficiency
    36 experiments
    37 gradient method
    38 indefinite complex symmetric linear systems
    39 indefinite linear systems
    40 iteration
    41 iteration method
    42 linear systems
    43 method
    44 method two subsystems
    45 negative stable splitting (SNSS) method
    46 new iteration method
    47 numerical experiments
    48 preconditioner
    49 splitting method
    50 stable splitting (SNSS) method
    51 subsystems
    52 suitable conditions
    53 symmetric indefinite linear systems
    54 symmetric linear systems
    55 system
    56 theoretical analysis
    57 two-parameter iteration method
    58 two-subsystem
    59 schema:name A new two-parameter iteration method for indefinite complex symmetric linear systems
    60 schema:pagination 1-19
    61 schema:productId N53ea85b7717d47a1a9146927a2c5b7e4
    62 N8f7c902fdea943f084add7afe38be9c6
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140292964
    64 https://doi.org/10.1007/s13160-021-00479-7
    65 schema:sdDatePublished 2022-01-01T18:56
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N43facac43169473c9b3176e53aef8688
    68 schema:url https://doi.org/10.1007/s13160-021-00479-7
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N06271806c77e47f6b272e65fffd606ef rdf:first sg:person.013037276477.05
    73 rdf:rest rdf:nil
    74 N43facac43169473c9b3176e53aef8688 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N53ea85b7717d47a1a9146927a2c5b7e4 schema:name dimensions_id
    77 schema:value pub.1140292964
    78 rdf:type schema:PropertyValue
    79 N8abd07ddc5dd49f69592314c6e624e94 rdf:first sg:person.014044542743.07
    80 rdf:rest N06271806c77e47f6b272e65fffd606ef
    81 N8f7c902fdea943f084add7afe38be9c6 schema:name doi
    82 schema:value 10.1007/s13160-021-00479-7
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Numerical and Computational Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1041814 schema:issn 0916-7005
    91 1868-937X
    92 schema:name Japan Journal of Industrial and Applied Mathematics
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.013037276477.05 schema:affiliation grid-institutes:grid.411872.9
    96 schema:familyName Salkuyeh
    97 schema:givenName Davod Khojasteh
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013037276477.05
    99 rdf:type schema:Person
    100 sg:person.014044542743.07 schema:affiliation grid-institutes:grid.411872.9
    101 schema:familyName Pourbagher
    102 schema:givenName Maeddeh
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044542743.07
    104 rdf:type schema:Person
    105 sg:pub.10.1007/s00009-015-0621-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034618962
    106 https://doi.org/10.1007/s00009-015-0621-4
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00607-010-0077-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017414725
    109 https://doi.org/10.1007/s00607-010-0077-0
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10092-018-0252-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100960877
    112 https://doi.org/10.1007/s10092-018-0252-9
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10543-018-0741-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580234
    115 https://doi.org/10.1007/s10543-018-0741-x
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11075-010-9441-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026284088
    118 https://doi.org/10.1007/s11075-010-9441-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11075-013-9764-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845485
    121 https://doi.org/10.1007/s11075-013-9764-1
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s11075-016-0123-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006823740
    124 https://doi.org/10.1007/s11075-016-0123-x
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11075-016-0245-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010110682
    127 https://doi.org/10.1007/s11075-016-0245-1
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s13160-014-0140-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011663719
    130 https://doi.org/10.1007/s13160-014-0140-x
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s13160-020-00447-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132325885
    133 https://doi.org/10.1007/s13160-020-00447-7
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s13160-021-00471-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137770095
    136 https://doi.org/10.1007/s13160-021-00471-1
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s40314-020-01220-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128674105
    139 https://doi.org/10.1007/s40314-020-01220-9
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s40314-021-01514-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137464933
    142 https://doi.org/10.1007/s40314-021-01514-6
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.411872.9 schema:alternateName Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan, Rasht, Iran
    145 Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
    146 schema:name Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan, Rasht, Iran
    147 Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...