# Traveling wave solutions in a diffusive predator–prey system with Holling type-III functional response

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-08-10

AUTHORS

Deniu Yang, Minghuan Liu

ABSTRACT

This work concerns with the existence of traveling wave solutions for the following diffusive predator–prey type system with Holling type-III functional response: ut(x,t)=d1uxx(x,t)+Au(x,t)(1-u(x,t)K)-φ(u(x,t))w(x,t),wt(x,t)=d2wxx(x,t)+w(x,t)(μφ(u(x,t))-C),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} \begin{array}{l} u_{t}(x,t)=d_{1} u_{xx}(x,t)+Au(x,t)\big (1-\frac{u(x,t)}{K}\big )-\varphi (u(x,t))w(x,t),\\ w_{t}(x,t)=d_{2} w_{xx}(x,t)+w(x,t)\big (\mu \varphi (u(x,t))-C\big ), \end{array} \end{aligned}\end{document}where all parameters are positive which will be mentioned later. The traveling wave solutions are established in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{R}^{4}$$\end{document}, which is a heteroclinic orbit connecting the boundary equilibrium and the positive equilibrium. Applying the methods of Wazewski Theorem and LaSalle’s Invariance Principle, and constructing a Liapunov function, we obtain the existence of traveling wave solutions. We also discuss some possible biological implications of the existence of these waves. More... »

PAGES

1-22

### References to SciGraph publications

• 2012-02-25. Exact traveling wave solutions for diffusive Lotka–Volterra systems of two competing species in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
• 2001-07. How predation can slow, stop or reverse a prey invasion in BULLETIN OF MATHEMATICAL BIOLOGY
• 1983-05. Travelling wave solutions of diffusive Lotka-Volterra equations in JOURNAL OF MATHEMATICAL BIOLOGY
• 1996-02. A predator-prey reaction-diffusion system with nonlocal effects in JOURNAL OF MATHEMATICAL BIOLOGY
• 2003-02. Existence of traveling wave solutions in a diffusive predator-prey model in JOURNAL OF MATHEMATICAL BIOLOGY
• 1976. Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion in BULLETIN OF MATHEMATICAL BIOLOGY

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00478-8

DOI

http://dx.doi.org/10.1007/s13160-021-00478-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140319351

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematical Sciences, Sichuan Normal University, 610068, Chengdu, China",
"id": "http://www.grid.ac/institutes/grid.412600.1",
"name": [
"School of Mathematical Sciences, Sichuan Normal University, 610068, Chengdu, China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Deniu",
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Mathematics and Information Science, Nanchang Hangkong University, 330063, Nanchang, China",
"id": "http://www.grid.ac/institutes/grid.412007.0",
"name": [
"College of Mathematics and Information Science, Nanchang Hangkong University, 330063, Nanchang, China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Minghuan",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00160498",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008639693",
"https://doi.org/10.1007/bf00160498"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00276112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022920199",
"https://doi.org/10.1007/bf00276112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s0092-8240(76)80005-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054614099",
"https://doi.org/10.1016/s0092-8240(76)80005-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1006/bulm.2001.0239",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011104688",
"https://doi.org/10.1006/bulm.2001.0239"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13160-012-0056-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045792551",
"https://doi.org/10.1007/s13160-012-0056-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00285-002-0171-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027067072",
"https://doi.org/10.1007/s00285-002-0171-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-10",
"datePublishedReg": "2021-08-10",
"description": "This work concerns with the existence of traveling wave solutions for the following diffusive predator\u2013prey type system with Holling type-III functional response: ut(x,t)=d1uxx(x,t)+Au(x,t)(1-u(x,t)K)-\u03c6(u(x,t))w(x,t),wt(x,t)=d2wxx(x,t)+w(x,t)(\u03bc\u03c6(u(x,t))-C),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} \\begin{array}{l} u_{t}(x,t)=d_{1} u_{xx}(x,t)+Au(x,t)\\big (1-\\frac{u(x,t)}{K}\\big )-\\varphi (u(x,t))w(x,t),\\\\ w_{t}(x,t)=d_{2} w_{xx}(x,t)+w(x,t)\\big (\\mu \\varphi (u(x,t))-C\\big ), \\end{array} \\end{aligned}\\end{document}where all parameters are positive which will be mentioned later. The traveling wave solutions are established in R4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varvec{R}^{4}$$\\end{document}, which is a heteroclinic orbit connecting the boundary equilibrium and the positive equilibrium. Applying the methods of Wazewski Theorem and LaSalle\u2019s Invariance Principle, and constructing a Liapunov function, we obtain the existence of traveling wave solutions. We also discuss some possible biological implications of the existence of these waves.",
"genre": "article",
"id": "sg:pub.10.1007/s13160-021-00478-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041814",
"issn": [
"0916-7005",
"1868-937X"
],
"name": "Japan Journal of Industrial and Applied Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"wave solutions",
"orbit",
"waves",
"possible biological implications",
"existence",
"equilibrium",
"system",
"parameters",
"invariance principle",
"solution",
"type system",
"heteroclinic orbits",
"principles",
"work",
"function",
"method",
"boundary equilibria",
"biological implications",
"theorem",
"response",
"implications",
"LaSalle's invariance principle",
"functional response",
"positive equilibrium",
"Liapunov function",
"Holling type III functional response",
"type III functional response",
"diffusive predator\u2013prey system",
"predator\u2013prey system",
"diffusive predator\u2013prey type system",
"predator\u2013prey type system",
"Wazewski Theorem"
],
"name": "Traveling wave solutions in a diffusive predator\u2013prey system with Holling type-III functional response",
"pagination": "1-22",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140319351"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13160-021-00478-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13160-021-00478-8",
"https://app.dimensions.ai/details/publication/pub.1140319351"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:59",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13160-021-00478-8"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00478-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00478-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00478-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00478-8'

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      63 URIs      47 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00478-8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:09
4 anzsrc-for:0913
5 schema:author N756d511bd1354cd9acececf3c269277c
6 schema:citation sg:pub.10.1006/bulm.2001.0239
7 sg:pub.10.1007/bf00160498
8 sg:pub.10.1007/bf00276112
9 sg:pub.10.1007/s00285-002-0171-9
10 sg:pub.10.1007/s13160-012-0056-2
11 sg:pub.10.1016/s0092-8240(76)80005-5
12 schema:datePublished 2021-08-10
13 schema:datePublishedReg 2021-08-10
14 schema:description This work concerns with the existence of traveling wave solutions for the following diffusive predator–prey type system with Holling type-III functional response: ut(x,t)=d1uxx(x,t)+Au(x,t)(1-u(x,t)K)-φ(u(x,t))w(x,t),wt(x,t)=d2wxx(x,t)+w(x,t)(μφ(u(x,t))-C),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} \begin{array}{l} u_{t}(x,t)=d_{1} u_{xx}(x,t)+Au(x,t)\big (1-\frac{u(x,t)}{K}\big )-\varphi (u(x,t))w(x,t),\\ w_{t}(x,t)=d_{2} w_{xx}(x,t)+w(x,t)\big (\mu \varphi (u(x,t))-C\big ), \end{array} \end{aligned}\end{document}where all parameters are positive which will be mentioned later. The traveling wave solutions are established in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{R}^{4}$$\end{document}, which is a heteroclinic orbit connecting the boundary equilibrium and the positive equilibrium. Applying the methods of Wazewski Theorem and LaSalle’s Invariance Principle, and constructing a Liapunov function, we obtain the existence of traveling wave solutions. We also discuss some possible biological implications of the existence of these waves.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf sg:journal.1041814
19 schema:keywords Holling type III functional response
20 LaSalle's invariance principle
21 Liapunov function
22 Wazewski Theorem
23 biological implications
24 boundary equilibria
25 diffusive predator–prey system
26 diffusive predator–prey type system
27 equilibrium
28 existence
29 function
30 functional response
31 heteroclinic orbits
32 implications
33 invariance principle
34 method
35 orbit
36 parameters
37 positive equilibrium
38 possible biological implications
39 predator–prey system
40 predator–prey type system
41 principles
42 response
43 solution
44 system
45 theorem
46 type III functional response
47 type system
48 wave solutions
49 waves
50 work
51 schema:name Traveling wave solutions in a diffusive predator–prey system with Holling type-III functional response
52 schema:pagination 1-22
53 schema:productId N08ce667dd2dc4effa01d0e8eab27db3f
54 N24737d798cc34cb7aca354177883bdb9
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140319351
56 https://doi.org/10.1007/s13160-021-00478-8
57 schema:sdDatePublished 2022-01-01T18:59
59 schema:sdPublisher N22f8d1ce1aa24774b17ef5a2cb988c25
60 schema:url https://doi.org/10.1007/s13160-021-00478-8
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N08ce667dd2dc4effa01d0e8eab27db3f schema:name doi
65 schema:value 10.1007/s13160-021-00478-8
66 rdf:type schema:PropertyValue
67 N22f8d1ce1aa24774b17ef5a2cb988c25 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N24737d798cc34cb7aca354177883bdb9 schema:name dimensions_id
70 schema:value pub.1140319351
71 rdf:type schema:PropertyValue
72 N756d511bd1354cd9acececf3c269277c rdf:first Nbfb79288023a4f91ac75628c6b474f2f
74 Nb4651413da8f4e4f8cf10168f2b3de04 schema:affiliation grid-institutes:grid.412007.0
75 schema:familyName Liu
76 schema:givenName Minghuan
77 rdf:type schema:Person
78 Nb7441f93dade4d8c930a1bb74580acd4 rdf:first Nb4651413da8f4e4f8cf10168f2b3de04
79 rdf:rest rdf:nil
80 Nbfb79288023a4f91ac75628c6b474f2f schema:affiliation grid-institutes:grid.412600.1
81 schema:familyName Yang
82 schema:givenName Deniu
83 rdf:type schema:Person
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
88 schema:name Applied Mathematics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mechanical Engineering
95 rdf:type schema:DefinedTerm
96 sg:journal.1041814 schema:issn 0916-7005
97 1868-937X
98 schema:name Japan Journal of Industrial and Applied Mathematics
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:pub.10.1006/bulm.2001.0239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011104688
102 https://doi.org/10.1006/bulm.2001.0239
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf00160498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008639693
105 https://doi.org/10.1007/bf00160498
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf00276112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022920199
108 https://doi.org/10.1007/bf00276112
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00285-002-0171-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027067072
111 https://doi.org/10.1007/s00285-002-0171-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s13160-012-0056-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045792551
114 https://doi.org/10.1007/s13160-012-0056-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1016/s0092-8240(76)80005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614099
117 https://doi.org/10.1016/s0092-8240(76)80005-5
118 rdf:type schema:CreativeWork
119 grid-institutes:grid.412007.0 schema:alternateName College of Mathematics and Information Science, Nanchang Hangkong University, 330063, Nanchang, China
120 schema:name College of Mathematics and Information Science, Nanchang Hangkong University, 330063, Nanchang, China
121 rdf:type schema:Organization
122 grid-institutes:grid.412600.1 schema:alternateName School of Mathematical Sciences, Sichuan Normal University, 610068, Chengdu, China
123 schema:name School of Mathematical Sciences, Sichuan Normal University, 610068, Chengdu, China
124 rdf:type schema:Organization

Preview window. Press ESC to close (or click here)

...