Ontology type: schema:ScholarlyArticle Open Access: True
2021-05-18
AUTHORSTakahito Kashiwabara, Takuya Tsuchiya
ABSTRACTDiscontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained. More... »
PAGES1001-1022
http://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y
DOIhttp://dx.doi.org/10.1007/s13160-021-00474-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138174045
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.26999.3d",
"name": [
"Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Kashiwabara",
"givenName": "Takahito",
"id": "sg:person.014546477626.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546477626.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan",
"id": "http://www.grid.ac/institutes/grid.255464.4",
"name": [
"Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan"
],
"type": "Organization"
},
"familyName": "Tsuchiya",
"givenName": "Takuya",
"id": "sg:person.011303061741.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303061741.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s13160-014-0161-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021671030",
"https://doi.org/10.1007/s13160-014-0161-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10492-015-0108-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051524804",
"https://doi.org/10.1007/s10492-015-0108-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-75934-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049394982",
"https://doi.org/10.1007/978-0-387-75934-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-4355-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013862413",
"https://doi.org/10.1007/978-1-4757-4355-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13160-013-0128-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008334814",
"https://doi.org/10.1007/s13160-013-0128-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-22980-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024006580",
"https://doi.org/10.1007/978-3-642-22980-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-67673-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093050935",
"https://doi.org/10.1007/978-3-319-67673-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13160-020-00433-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129684590",
"https://doi.org/10.1007/s13160-020-00433-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02995904",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012757526",
"https://doi.org/10.1007/bf02995904"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-05-18",
"datePublishedReg": "2021-05-18",
"description": "Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.",
"genre": "article",
"id": "sg:pub.10.1007/s13160-021-00474-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.9187382",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6839652",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.5905520",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9205344",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1041814",
"issn": [
"0916-7005",
"1868-937X"
],
"name": "Japan Journal of Industrial and Applied Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"keywords": [
"shape regularity conditions",
"usual Galerkin finite element method",
"DG scheme",
"DG method",
"anisotropic meshes",
"Galerkin finite element method",
"new DG scheme",
"theoretical error estimates",
"discontinuous Galerkin scheme",
"discontinuous Galerkin method",
"standard DG method",
"theoretical error analysis",
"Galerkin scheme",
"practical computation",
"Galerkin method",
"error estimates",
"numerical experiments",
"penalty term",
"finite element method",
"error analysis",
"element method",
"mesh",
"scheme",
"good properties",
"computation",
"extension",
"estimates",
"terms",
"properties",
"conditions",
"vast amount",
"experiments",
"analysis",
"amount",
"study",
"method",
"paper"
],
"name": "A robust discontinuous Galerkin scheme on anisotropic meshes",
"pagination": "1001-1022",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138174045"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13160-021-00474-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13160-021-00474-y",
"https://app.dimensions.ai/details/publication/pub.1138174045"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_880.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13160-021-00474-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
71 URIs
54 LITERALS
6 BLANK NODES