A robust discontinuous Galerkin scheme on anisotropic meshes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-18

AUTHORS

Takahito Kashiwabara, Takuya Tsuchiya

ABSTRACT

Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained. More... »

PAGES

1001-1022

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y

DOI

http://dx.doi.org/10.1007/s13160-021-00474-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138174045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashiwabara", 
        "givenName": "Takahito", 
        "id": "sg:person.014546477626.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546477626.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuchiya", 
        "givenName": "Takuya", 
        "id": "sg:person.011303061741.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303061741.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13160-013-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008334814", 
          "https://doi.org/10.1007/s13160-013-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-020-00433-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129684590", 
          "https://doi.org/10.1007/s13160-020-00433-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22980-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024006580", 
          "https://doi.org/10.1007/978-3-642-22980-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02995904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757526", 
          "https://doi.org/10.1007/bf02995904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67673-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093050935", 
          "https://doi.org/10.1007/978-3-319-67673-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-014-0161-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671030", 
          "https://doi.org/10.1007/s13160-014-0161-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10492-015-0108-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051524804", 
          "https://doi.org/10.1007/s10492-015-0108-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4355-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013862413", 
          "https://doi.org/10.1007/978-1-4757-4355-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049394982", 
          "https://doi.org/10.1007/978-0-387-75934-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-18", 
    "datePublishedReg": "2021-05-18", 
    "description": "Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-021-00474-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5905520", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6839652", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9187382", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9205344", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "shape regularity conditions", 
      "usual Galerkin finite element method", 
      "DG scheme", 
      "DG method", 
      "anisotropic meshes", 
      "Galerkin finite element method", 
      "theoretical error estimates", 
      "discontinuous Galerkin scheme", 
      "discontinuous Galerkin method", 
      "standard DG method", 
      "Galerkin scheme", 
      "theoretical error analysis", 
      "practical computation", 
      "Galerkin method", 
      "error estimates", 
      "numerical experiments", 
      "penalty term", 
      "finite element method", 
      "error analysis", 
      "element method", 
      "mesh", 
      "scheme", 
      "good properties", 
      "computation", 
      "extension", 
      "estimates", 
      "terms", 
      "properties", 
      "conditions", 
      "vast amount", 
      "experiments", 
      "analysis", 
      "amount", 
      "study", 
      "method", 
      "paper", 
      "new symmetric interior penalty DG scheme", 
      "symmetric interior penalty DG scheme", 
      "interior penalty DG scheme", 
      "penalty DG scheme", 
      "modified penalty term", 
      "new DG scheme", 
      "robust discontinuous Galerkin scheme"
    ], 
    "name": "A robust discontinuous Galerkin scheme on anisotropic meshes", 
    "pagination": "1001-1022", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138174045"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-021-00474-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-021-00474-y", 
      "https://app.dimensions.ai/details/publication/pub.1138174045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-021-00474-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      77 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00474-y schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ncbff4102e718426fa6a52b091f8298ce
4 schema:citation sg:pub.10.1007/978-0-387-75934-0
5 sg:pub.10.1007/978-1-4757-4355-5
6 sg:pub.10.1007/978-3-319-67673-9
7 sg:pub.10.1007/978-3-642-22980-0
8 sg:pub.10.1007/bf02995904
9 sg:pub.10.1007/s10492-015-0108-4
10 sg:pub.10.1007/s13160-013-0128-y
11 sg:pub.10.1007/s13160-014-0161-5
12 sg:pub.10.1007/s13160-020-00433-z
13 schema:datePublished 2021-05-18
14 schema:datePublishedReg 2021-05-18
15 schema:description Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N1e78e175fae0436897895798f174506d
20 N30b24c8653cb41ceb0052766996956ff
21 sg:journal.1041814
22 schema:keywords DG method
23 DG scheme
24 Galerkin finite element method
25 Galerkin method
26 Galerkin scheme
27 amount
28 analysis
29 anisotropic meshes
30 computation
31 conditions
32 discontinuous Galerkin method
33 discontinuous Galerkin scheme
34 element method
35 error analysis
36 error estimates
37 estimates
38 experiments
39 extension
40 finite element method
41 good properties
42 interior penalty DG scheme
43 mesh
44 method
45 modified penalty term
46 new DG scheme
47 new symmetric interior penalty DG scheme
48 numerical experiments
49 paper
50 penalty DG scheme
51 penalty term
52 practical computation
53 properties
54 robust discontinuous Galerkin scheme
55 scheme
56 shape regularity conditions
57 standard DG method
58 study
59 symmetric interior penalty DG scheme
60 terms
61 theoretical error analysis
62 theoretical error estimates
63 usual Galerkin finite element method
64 vast amount
65 schema:name A robust discontinuous Galerkin scheme on anisotropic meshes
66 schema:pagination 1001-1022
67 schema:productId N62b6d2773a8c4ca79c1c11447569b028
68 Ncff5c556f7cd44daa9b90f29247ed127
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138174045
70 https://doi.org/10.1007/s13160-021-00474-y
71 schema:sdDatePublished 2022-01-01T19:03
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N94258e84872a411ca921cc8688056c6e
74 schema:url https://doi.org/10.1007/s13160-021-00474-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1e78e175fae0436897895798f174506d schema:volumeNumber 38
79 rdf:type schema:PublicationVolume
80 N30b24c8653cb41ceb0052766996956ff schema:issueNumber 3
81 rdf:type schema:PublicationIssue
82 N5a729fd3d23d4e74bbd6db22e1346e29 rdf:first sg:person.011303061741.42
83 rdf:rest rdf:nil
84 N62b6d2773a8c4ca79c1c11447569b028 schema:name doi
85 schema:value 10.1007/s13160-021-00474-y
86 rdf:type schema:PropertyValue
87 N94258e84872a411ca921cc8688056c6e schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Ncbff4102e718426fa6a52b091f8298ce rdf:first sg:person.014546477626.20
90 rdf:rest N5a729fd3d23d4e74bbd6db22e1346e29
91 Ncff5c556f7cd44daa9b90f29247ed127 schema:name dimensions_id
92 schema:value pub.1138174045
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Numerical and Computational Mathematics
99 rdf:type schema:DefinedTerm
100 sg:grant.5905520 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
101 rdf:type schema:MonetaryGrant
102 sg:grant.6839652 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
103 rdf:type schema:MonetaryGrant
104 sg:grant.9187382 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
105 rdf:type schema:MonetaryGrant
106 sg:grant.9205344 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
107 rdf:type schema:MonetaryGrant
108 sg:journal.1041814 schema:issn 0916-7005
109 1868-937X
110 schema:name Japan Journal of Industrial and Applied Mathematics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.011303061741.42 schema:affiliation grid-institutes:grid.255464.4
114 schema:familyName Tsuchiya
115 schema:givenName Takuya
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303061741.42
117 rdf:type schema:Person
118 sg:person.014546477626.20 schema:affiliation grid-institutes:grid.26999.3d
119 schema:familyName Kashiwabara
120 schema:givenName Takahito
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546477626.20
122 rdf:type schema:Person
123 sg:pub.10.1007/978-0-387-75934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049394982
124 https://doi.org/10.1007/978-0-387-75934-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-1-4757-4355-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013862413
127 https://doi.org/10.1007/978-1-4757-4355-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-319-67673-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093050935
130 https://doi.org/10.1007/978-3-319-67673-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-3-642-22980-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024006580
133 https://doi.org/10.1007/978-3-642-22980-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02995904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012757526
136 https://doi.org/10.1007/bf02995904
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10492-015-0108-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051524804
139 https://doi.org/10.1007/s10492-015-0108-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s13160-013-0128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334814
142 https://doi.org/10.1007/s13160-013-0128-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s13160-014-0161-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671030
145 https://doi.org/10.1007/s13160-014-0161-5
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s13160-020-00433-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1129684590
148 https://doi.org/10.1007/s13160-020-00433-z
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.255464.4 schema:alternateName Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
151 schema:name Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
152 rdf:type schema:Organization
153 grid-institutes:grid.26999.3d schema:alternateName Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
154 schema:name Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...