A robust discontinuous Galerkin scheme on anisotropic meshes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-18

AUTHORS

Takahito Kashiwabara, Takuya Tsuchiya

ABSTRACT

Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained. More... »

PAGES

1001-1022

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y

DOI

http://dx.doi.org/10.1007/s13160-021-00474-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138174045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashiwabara", 
        "givenName": "Takahito", 
        "id": "sg:person.014546477626.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546477626.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuchiya", 
        "givenName": "Takuya", 
        "id": "sg:person.011303061741.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303061741.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13160-014-0161-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671030", 
          "https://doi.org/10.1007/s13160-014-0161-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10492-015-0108-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051524804", 
          "https://doi.org/10.1007/s10492-015-0108-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049394982", 
          "https://doi.org/10.1007/978-0-387-75934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4355-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013862413", 
          "https://doi.org/10.1007/978-1-4757-4355-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-013-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008334814", 
          "https://doi.org/10.1007/s13160-013-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22980-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024006580", 
          "https://doi.org/10.1007/978-3-642-22980-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-67673-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093050935", 
          "https://doi.org/10.1007/978-3-319-67673-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-020-00433-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129684590", 
          "https://doi.org/10.1007/s13160-020-00433-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02995904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757526", 
          "https://doi.org/10.1007/bf02995904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-18", 
    "datePublishedReg": "2021-05-18", 
    "description": "Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-021-00474-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9187382", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6839652", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5905520", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9205344", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "shape regularity conditions", 
      "usual Galerkin finite element method", 
      "DG scheme", 
      "DG method", 
      "anisotropic meshes", 
      "Galerkin finite element method", 
      "new DG scheme", 
      "theoretical error estimates", 
      "discontinuous Galerkin scheme", 
      "discontinuous Galerkin method", 
      "standard DG method", 
      "theoretical error analysis", 
      "Galerkin scheme", 
      "practical computation", 
      "Galerkin method", 
      "error estimates", 
      "numerical experiments", 
      "penalty term", 
      "finite element method", 
      "error analysis", 
      "element method", 
      "mesh", 
      "scheme", 
      "good properties", 
      "computation", 
      "extension", 
      "estimates", 
      "terms", 
      "properties", 
      "conditions", 
      "vast amount", 
      "experiments", 
      "analysis", 
      "amount", 
      "study", 
      "method", 
      "paper"
    ], 
    "name": "A robust discontinuous Galerkin scheme on anisotropic meshes", 
    "pagination": "1001-1022", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138174045"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-021-00474-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-021-00474-y", 
      "https://app.dimensions.ai/details/publication/pub.1138174045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_880.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-021-00474-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-021-00474-y'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      71 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-021-00474-y schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N19f7c8ae266f46b69a838ead3614333f
4 schema:citation sg:pub.10.1007/978-0-387-75934-0
5 sg:pub.10.1007/978-1-4757-4355-5
6 sg:pub.10.1007/978-3-319-67673-9
7 sg:pub.10.1007/978-3-642-22980-0
8 sg:pub.10.1007/bf02995904
9 sg:pub.10.1007/s10492-015-0108-4
10 sg:pub.10.1007/s13160-013-0128-y
11 sg:pub.10.1007/s13160-014-0161-5
12 sg:pub.10.1007/s13160-020-00433-z
13 schema:datePublished 2021-05-18
14 schema:datePublishedReg 2021-05-18
15 schema:description Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N686a5ad0c8cd4f53b583db91c2efdff8
20 Ncfb020f21e684311874bfbfceb5051b2
21 sg:journal.1041814
22 schema:keywords DG method
23 DG scheme
24 Galerkin finite element method
25 Galerkin method
26 Galerkin scheme
27 amount
28 analysis
29 anisotropic meshes
30 computation
31 conditions
32 discontinuous Galerkin method
33 discontinuous Galerkin scheme
34 element method
35 error analysis
36 error estimates
37 estimates
38 experiments
39 extension
40 finite element method
41 good properties
42 mesh
43 method
44 new DG scheme
45 numerical experiments
46 paper
47 penalty term
48 practical computation
49 properties
50 scheme
51 shape regularity conditions
52 standard DG method
53 study
54 terms
55 theoretical error analysis
56 theoretical error estimates
57 usual Galerkin finite element method
58 vast amount
59 schema:name A robust discontinuous Galerkin scheme on anisotropic meshes
60 schema:pagination 1001-1022
61 schema:productId N86469cb238b74f39bb115158cc750966
62 Ne9302bc2ebb64ecd823249c0bc1cd2cc
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138174045
64 https://doi.org/10.1007/s13160-021-00474-y
65 schema:sdDatePublished 2022-05-20T07:38
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Neda93f96534a4a2c94b94e0cefe988d1
68 schema:url https://doi.org/10.1007/s13160-021-00474-y
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N19f7c8ae266f46b69a838ead3614333f rdf:first sg:person.014546477626.20
73 rdf:rest Nb8c85e8e56294de084c6d12bb328e7f1
74 N686a5ad0c8cd4f53b583db91c2efdff8 schema:volumeNumber 38
75 rdf:type schema:PublicationVolume
76 N86469cb238b74f39bb115158cc750966 schema:name dimensions_id
77 schema:value pub.1138174045
78 rdf:type schema:PropertyValue
79 Nb8c85e8e56294de084c6d12bb328e7f1 rdf:first sg:person.011303061741.42
80 rdf:rest rdf:nil
81 Ncfb020f21e684311874bfbfceb5051b2 schema:issueNumber 3
82 rdf:type schema:PublicationIssue
83 Ne9302bc2ebb64ecd823249c0bc1cd2cc schema:name doi
84 schema:value 10.1007/s13160-021-00474-y
85 rdf:type schema:PropertyValue
86 Neda93f96534a4a2c94b94e0cefe988d1 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
92 schema:name Numerical and Computational Mathematics
93 rdf:type schema:DefinedTerm
94 sg:grant.5905520 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
95 rdf:type schema:MonetaryGrant
96 sg:grant.6839652 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
97 rdf:type schema:MonetaryGrant
98 sg:grant.9187382 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
99 rdf:type schema:MonetaryGrant
100 sg:grant.9205344 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-021-00474-y
101 rdf:type schema:MonetaryGrant
102 sg:journal.1041814 schema:issn 0916-7005
103 1868-937X
104 schema:name Japan Journal of Industrial and Applied Mathematics
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.011303061741.42 schema:affiliation grid-institutes:grid.255464.4
108 schema:familyName Tsuchiya
109 schema:givenName Takuya
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303061741.42
111 rdf:type schema:Person
112 sg:person.014546477626.20 schema:affiliation grid-institutes:grid.26999.3d
113 schema:familyName Kashiwabara
114 schema:givenName Takahito
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546477626.20
116 rdf:type schema:Person
117 sg:pub.10.1007/978-0-387-75934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049394982
118 https://doi.org/10.1007/978-0-387-75934-0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-1-4757-4355-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013862413
121 https://doi.org/10.1007/978-1-4757-4355-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-319-67673-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093050935
124 https://doi.org/10.1007/978-3-319-67673-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-642-22980-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024006580
127 https://doi.org/10.1007/978-3-642-22980-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02995904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012757526
130 https://doi.org/10.1007/bf02995904
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10492-015-0108-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051524804
133 https://doi.org/10.1007/s10492-015-0108-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s13160-013-0128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334814
136 https://doi.org/10.1007/s13160-013-0128-y
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s13160-014-0161-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671030
139 https://doi.org/10.1007/s13160-014-0161-5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s13160-020-00433-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1129684590
142 https://doi.org/10.1007/s13160-020-00433-z
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.255464.4 schema:alternateName Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
145 schema:name Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
146 rdf:type schema:Organization
147 grid-institutes:grid.26999.3d schema:alternateName Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
148 schema:name Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...