Ultradiscrete analogues of the hard-spring equation and its conserved quantity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Shin Isojima, Hirotaka Toyama

ABSTRACT

The ultradiscrete analogues with parity variables of the so-called hard spring equation and its conserved quantity are proposed. Solutions of the resulting equation are constructed for many initial values, and a diagram is proposed to illustrate the structure of each solution. The behavior of the solutions is classified into four (or precisely five) types, two of which are periodic. Then, the ultradiscrete analogue of the conserved quantity is investigated to determine whether the conserved quantity is preserved for each solution. Three types of behavior are observed for the “ultradiscretized conserved quantity,” which is actually preserved in one type but not always in the other types. However, perfect matching between the behavior of the ultradiscrete solutions and that of the ultradiscretized conserved quantity is observed, and the mathematical structure partly survives through ultradiscretization. More... »

PAGES

1-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-018-0329-5

DOI

http://dx.doi.org/10.1007/s13160-018-0329-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106706039


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University, 3-7-2, Kajino-cho, 184-8584, Koganei-shi, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isojima", 
        "givenName": "Shin", 
        "id": "sg:person.015326546032.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326546032.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University, 3-7-2, Kajino-cho, 184-8584, Koganei-shi, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toyama", 
        "givenName": "Hirotaka", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.81.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/47/6/065201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033542391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/17/175201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035694036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/31/315206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036642025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/31/315206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036642025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2360394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041531679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s140292511000060x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048871409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/14/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/14/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/49/14/145207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059174281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.59.3514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063111891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3842/sigma.2013.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071452381"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The ultradiscrete analogues with parity variables of the so-called hard spring equation and its conserved quantity are proposed. Solutions of the resulting equation are constructed for many initial values, and a diagram is proposed to illustrate the structure of each solution. The behavior of the solutions is classified into four (or precisely five) types, two of which are periodic. Then, the ultradiscrete analogue of the conserved quantity is investigated to determine whether the conserved quantity is preserved for each solution. Three types of behavior are observed for the \u201cultradiscretized conserved quantity,\u201d which is actually preserved in one type but not always in the other types. However, perfect matching between the behavior of the ultradiscrete solutions and that of the ultradiscretized conserved quantity is observed, and the mathematical structure partly survives through ultradiscretization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13160-018-0329-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6151828", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "type": "Periodical"
      }
    ], 
    "name": "Ultradiscrete analogues of the hard-spring equation and its conserved quantity", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02a0b8b1405463fd20ab9d0acbe346bfae5ccc56bbf3fc0f70975dbc6e349c72"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-018-0329-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106706039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-018-0329-5", 
      "https://app.dimensions.ai/details/publication/pub.1106706039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13160-018-0329-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-018-0329-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-018-0329-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-018-0329-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-018-0329-5'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      37 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-018-0329-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1f1dd07fdc4943aea57de309247ee29c
4 schema:citation https://doi.org/10.1063/1.2360394
5 https://doi.org/10.1088/0305-4470/39/14/011
6 https://doi.org/10.1088/1751-8113/42/31/315206
7 https://doi.org/10.1088/1751-8113/44/17/175201
8 https://doi.org/10.1088/1751-8113/47/6/065201
9 https://doi.org/10.1088/1751-8113/49/14/145207
10 https://doi.org/10.1103/physrevlett.67.1829
11 https://doi.org/10.1103/physrevlett.76.3247
12 https://doi.org/10.1103/physrevlett.81.325
13 https://doi.org/10.1142/s140292511000060x
14 https://doi.org/10.1143/jpsj.59.3514
15 https://doi.org/10.3842/sigma.2013.070
16 schema:datePublished 2019-01
17 schema:datePublishedReg 2019-01-01
18 schema:description The ultradiscrete analogues with parity variables of the so-called hard spring equation and its conserved quantity are proposed. Solutions of the resulting equation are constructed for many initial values, and a diagram is proposed to illustrate the structure of each solution. The behavior of the solutions is classified into four (or precisely five) types, two of which are periodic. Then, the ultradiscrete analogue of the conserved quantity is investigated to determine whether the conserved quantity is preserved for each solution. Three types of behavior are observed for the “ultradiscretized conserved quantity,” which is actually preserved in one type but not always in the other types. However, perfect matching between the behavior of the ultradiscrete solutions and that of the ultradiscretized conserved quantity is observed, and the mathematical structure partly survives through ultradiscretization.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1041814
23 schema:name Ultradiscrete analogues of the hard-spring equation and its conserved quantity
24 schema:pagination 1-26
25 schema:productId N0379748464c1485d89cc9b6e59b241d9
26 Naf9a60bd166245b088a3b00507f4866b
27 Ne9e1dff8baec44f49800cf3ccff590e6
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106706039
29 https://doi.org/10.1007/s13160-018-0329-5
30 schema:sdDatePublished 2019-04-10T19:56
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N2adda793279f49f9aa031fdb7a21589a
33 schema:url http://link.springer.com/10.1007/s13160-018-0329-5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0379748464c1485d89cc9b6e59b241d9 schema:name dimensions_id
38 schema:value pub.1106706039
39 rdf:type schema:PropertyValue
40 N181c8293737a4e3dbc2754bf7a83ff61 rdf:first N34f9a9ede0e44ff5a20851817bec5b3e
41 rdf:rest rdf:nil
42 N1f1dd07fdc4943aea57de309247ee29c rdf:first sg:person.015326546032.24
43 rdf:rest N181c8293737a4e3dbc2754bf7a83ff61
44 N2adda793279f49f9aa031fdb7a21589a schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N34f9a9ede0e44ff5a20851817bec5b3e schema:affiliation https://www.grid.ac/institutes/grid.257114.4
47 schema:familyName Toyama
48 schema:givenName Hirotaka
49 rdf:type schema:Person
50 Naf9a60bd166245b088a3b00507f4866b schema:name doi
51 schema:value 10.1007/s13160-018-0329-5
52 rdf:type schema:PropertyValue
53 Ne9e1dff8baec44f49800cf3ccff590e6 schema:name readcube_id
54 schema:value 02a0b8b1405463fd20ab9d0acbe346bfae5ccc56bbf3fc0f70975dbc6e349c72
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:grant.6151828 http://pending.schema.org/fundedItem sg:pub.10.1007/s13160-018-0329-5
63 rdf:type schema:MonetaryGrant
64 sg:journal.1041814 schema:issn 0916-7005
65 1868-937X
66 schema:name Japan Journal of Industrial and Applied Mathematics
67 rdf:type schema:Periodical
68 sg:person.015326546032.24 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
69 schema:familyName Isojima
70 schema:givenName Shin
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015326546032.24
72 rdf:type schema:Person
73 https://doi.org/10.1063/1.2360394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041531679
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1088/0305-4470/39/14/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079522
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1088/1751-8113/42/31/315206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036642025
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1088/1751-8113/44/17/175201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035694036
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1088/1751-8113/47/6/065201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033542391
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1088/1751-8113/49/14/145207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059174281
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrevlett.67.1829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803214
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevlett.76.3247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813048
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevlett.81.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138008
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1142/s140292511000060x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048871409
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1143/jpsj.59.3514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063111891
94 rdf:type schema:CreativeWork
95 https://doi.org/10.3842/sigma.2013.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071452381
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
98 schema:name Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University, 3-7-2, Kajino-cho, 184-8584, Koganei-shi, Tokyo, Japan
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...