Convergence analysis of inexact LU-type preconditioners for indefinite problems arising in incompressible continuum analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02-25

AUTHORS

Takumi Washio, Toshiaki Hisada

ABSTRACT

Developing efficient solution methods for indefinite problems arising in constraint problems is an important issue in incompressible or nearly incompressible continuum analysis. In this paper, we first compare the convergence properties of two classical iterative approaches, namely the inexact block triangular algorithm and the inexact block LU algorithm. It is shown that the latter can be applied under more relaxed conditions than the former. We further analyze properties of the latter algorithm when applied as a preconditioner for Krylov subspace methods. Similar to the analysis of the inexact block LU preconditioner, we also analyze the properties of a fill-controlled incomplete LU preconditioner. The theoretical convergence estimates are validated and the performance of the two LU-type preconditioners are compared through numerical experiments with large deformation problems of a hyper-elastic material. More... »

PAGES

89-117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13160-011-0024-2

DOI

http://dx.doi.org/10.1007/s13160-011-0024-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028919846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Frontier Science, University of Tokyo, 5-1-5 Kashiwanoha, 277-0882, Kashiwa, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Frontier Science, University of Tokyo, 5-1-5 Kashiwanoha, 277-0882, Kashiwa, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Washio", 
        "givenName": "Takumi", 
        "id": "sg:person.01163254214.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163254214.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Frontier Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Frontier Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hisada", 
        "givenName": "Toshiaki", 
        "id": "sg:person.01231367414.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02576171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047694330", 
          "https://doi.org/10.1007/bf02576171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-004-0529-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033839670", 
          "https://doi.org/10.1007/s00211-004-0529-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038707011", 
          "https://doi.org/10.1007/s002110050138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003090084", 
          "https://doi.org/10.1007/s002110050405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110100323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033898405", 
          "https://doi.org/10.1007/s002110100323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110100300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039654387", 
          "https://doi.org/10.1007/s002110100300"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-25", 
    "datePublishedReg": "2011-02-25", 
    "description": "Developing efficient solution methods for indefinite problems arising in constraint problems is an important issue in incompressible or nearly incompressible continuum analysis. In this paper, we first compare the convergence properties of two classical iterative approaches, namely the inexact block triangular algorithm and the inexact block LU algorithm. It is shown that the latter can be applied under more relaxed conditions than the former. We further analyze properties of the latter algorithm when applied as a preconditioner for Krylov subspace methods. Similar to the analysis of the inexact block LU preconditioner, we also analyze the properties of a fill-controlled incomplete LU preconditioner. The theoretical convergence estimates are validated and the performance of the two LU-type preconditioners are compared through numerical experiments with large deformation problems of a hyper-elastic material.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13160-011-0024-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041814", 
        "issn": [
          "0916-7005", 
          "1868-937X"
        ], 
        "name": "Japan Journal of Industrial and Applied Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "indefinite problems", 
      "incomplete LU preconditioner", 
      "Krylov subspace methods", 
      "theoretical convergence estimates", 
      "efficient solution method", 
      "classical iterative approach", 
      "convergence estimates", 
      "convergence analysis", 
      "convergence properties", 
      "preconditioner", 
      "subspace method", 
      "numerical experiments", 
      "solution method", 
      "constraint problem", 
      "LU algorithm", 
      "latter algorithm", 
      "large deformation problems", 
      "iterative approach", 
      "hyper-elastic materials", 
      "continuum analysis", 
      "relaxed conditions", 
      "deformation problems", 
      "algorithm", 
      "problem", 
      "triangular algorithm", 
      "properties", 
      "important issue", 
      "estimates", 
      "analysis", 
      "approach", 
      "performance", 
      "conditions", 
      "experiments", 
      "materials", 
      "issues", 
      "method", 
      "paper"
    ], 
    "name": "Convergence analysis of inexact LU-type preconditioners for indefinite problems arising in incompressible continuum analysis", 
    "pagination": "89-117", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028919846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13160-011-0024-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13160-011-0024-2", 
      "https://app.dimensions.ai/details/publication/pub.1028919846"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13160-011-0024-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13160-011-0024-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13160-011-0024-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13160-011-0024-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13160-011-0024-2'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      70 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13160-011-0024-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:09
4 anzsrc-for:0913
5 schema:author N619ad421beae442a8992524426d8c2ae
6 schema:citation sg:pub.10.1007/bf02576171
7 sg:pub.10.1007/s00211-004-0529-6
8 sg:pub.10.1007/s002110050138
9 sg:pub.10.1007/s002110050405
10 sg:pub.10.1007/s002110100300
11 sg:pub.10.1007/s002110100323
12 schema:datePublished 2011-02-25
13 schema:datePublishedReg 2011-02-25
14 schema:description Developing efficient solution methods for indefinite problems arising in constraint problems is an important issue in incompressible or nearly incompressible continuum analysis. In this paper, we first compare the convergence properties of two classical iterative approaches, namely the inexact block triangular algorithm and the inexact block LU algorithm. It is shown that the latter can be applied under more relaxed conditions than the former. We further analyze properties of the latter algorithm when applied as a preconditioner for Krylov subspace methods. Similar to the analysis of the inexact block LU preconditioner, we also analyze the properties of a fill-controlled incomplete LU preconditioner. The theoretical convergence estimates are validated and the performance of the two LU-type preconditioners are compared through numerical experiments with large deformation problems of a hyper-elastic material.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N113a901a723e4753abd1bdc0a765f2c7
19 N982ca53658d048e19ad451341c0cec75
20 sg:journal.1041814
21 schema:keywords Krylov subspace methods
22 LU algorithm
23 algorithm
24 analysis
25 approach
26 classical iterative approach
27 conditions
28 constraint problem
29 continuum analysis
30 convergence analysis
31 convergence estimates
32 convergence properties
33 deformation problems
34 efficient solution method
35 estimates
36 experiments
37 hyper-elastic materials
38 important issue
39 incomplete LU preconditioner
40 indefinite problems
41 issues
42 iterative approach
43 large deformation problems
44 latter algorithm
45 materials
46 method
47 numerical experiments
48 paper
49 performance
50 preconditioner
51 problem
52 properties
53 relaxed conditions
54 solution method
55 subspace method
56 theoretical convergence estimates
57 triangular algorithm
58 schema:name Convergence analysis of inexact LU-type preconditioners for indefinite problems arising in incompressible continuum analysis
59 schema:pagination 89-117
60 schema:productId N0cf7ef52b6894d51ba1011dcbe92b882
61 N971430c8e66f47f58ae6887e0bf6008f
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028919846
63 https://doi.org/10.1007/s13160-011-0024-2
64 schema:sdDatePublished 2022-06-01T22:09
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nc5f387f410424a5690cde410fe90d893
67 schema:url https://doi.org/10.1007/s13160-011-0024-2
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0cf7ef52b6894d51ba1011dcbe92b882 schema:name dimensions_id
72 schema:value pub.1028919846
73 rdf:type schema:PropertyValue
74 N113a901a723e4753abd1bdc0a765f2c7 schema:volumeNumber 28
75 rdf:type schema:PublicationVolume
76 N619ad421beae442a8992524426d8c2ae rdf:first sg:person.01163254214.58
77 rdf:rest N9eb734ddcdca460faece2c7bb7d43001
78 N971430c8e66f47f58ae6887e0bf6008f schema:name doi
79 schema:value 10.1007/s13160-011-0024-2
80 rdf:type schema:PropertyValue
81 N982ca53658d048e19ad451341c0cec75 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N9eb734ddcdca460faece2c7bb7d43001 rdf:first sg:person.01231367414.61
84 rdf:rest rdf:nil
85 Nc5f387f410424a5690cde410fe90d893 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
91 schema:name Applied Mathematics
92 rdf:type schema:DefinedTerm
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mechanical Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1041814 schema:issn 0916-7005
100 1868-937X
101 schema:name Japan Journal of Industrial and Applied Mathematics
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.01163254214.58 schema:affiliation grid-institutes:grid.26999.3d
105 schema:familyName Washio
106 schema:givenName Takumi
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163254214.58
108 rdf:type schema:Person
109 sg:person.01231367414.61 schema:affiliation grid-institutes:grid.26999.3d
110 schema:familyName Hisada
111 schema:givenName Toshiaki
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61
113 rdf:type schema:Person
114 sg:pub.10.1007/bf02576171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694330
115 https://doi.org/10.1007/bf02576171
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00211-004-0529-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033839670
118 https://doi.org/10.1007/s00211-004-0529-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s002110050138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038707011
121 https://doi.org/10.1007/s002110050138
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s002110050405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003090084
124 https://doi.org/10.1007/s002110050405
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s002110100300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039654387
127 https://doi.org/10.1007/s002110100300
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s002110100323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033898405
130 https://doi.org/10.1007/s002110100323
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.26999.3d schema:alternateName Graduate School of Frontier Science, University of Tokyo, 5-1-5 Kashiwanoha, 277-0882, Kashiwa, Chiba, Japan
133 Graduate School of Frontier Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
134 schema:name Graduate School of Frontier Science, University of Tokyo, 5-1-5 Kashiwanoha, 277-0882, Kashiwa, Chiba, Japan
135 Graduate School of Frontier Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...