Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

Sangwook Park, Dong-Joon Kim, Seung-Woo Lee, Kie-Woung Lee, Jongkhun Kim, Eun-Ji Song, Kyong-Hwan Seo

ABSTRACT

This article describes a three way inter-comparison of forecast skill on an extended medium-range time scale using the Korea Meteorological Administration (KMA) operational ensemble numerical weather prediction (NWP) systems (i.e., atmosphere-only global ensemble prediction system (EPSG) and ocean-atmosphere coupledEPSG) and KMA operational seasonal prediction system, the Global Seasonal forecast system version 5 (GloSea5). The main motivation is to investigate whether the ensemble NWP system can provide advantage over the existing seasonal prediction system for the extended medium-range forecast (30 days) even with putting extra resources in extended integration or coupling with ocean with NWP system. Two types of evaluation statistics are examined: the basic verification statistics - the anomaly correlation and RMSE of 500-hPa geopotential height and 1.5-meter surface temperature for the global and East Asia area, and the other is the Real-time Multivariate Madden and Julian Oscillation (MJO) indices (RMM1 and RMM2) - which is used to examine the MJO prediction skill. The MJO is regarded as a main source of forecast skill in the tropics linked to the mid-latitude weather on monthly time scale. Under limited number of experiment cases, the coupled NWP extends the forecast skill of the NWP by a few more days, and thereafter such forecast skill is overtaken by that of the seasonal prediction system. At present stage, it seems there is little gain from the coupled NWP even though more resources are put into it. Considering this, the best combination of numerical product guidance for operational forecasters for an extended medium-range is extension of the forecast lead time of the current ensemble NWP (EPSG) up to 20 days and use of the seasonal prediction system (GloSea5) forecast thereafter, though there exists a matter of consistency between the two systems. More... »

PAGES

393-401

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13143-017-0035-2

DOI

http://dx.doi.org/10.1007/s13143-017-0035-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091416747


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Numerical Model Development Division, Korea Meteorological Administration, 61 Yeouidaebang-ro 16-gil, 07062, Dongjak-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.453000.2", 
          "name": [
            "Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea", 
            "Numerical Model Development Division, Korea Meteorological Administration, 61 Yeouidaebang-ro 16-gil, 07062, Dongjak-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sangwook", 
        "id": "sg:person.016261336604.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261336604.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.453000.2", 
          "name": [
            "Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong-Joon", 
        "id": "sg:person.012605577655.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605577655.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.453000.2", 
          "name": [
            "Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seung-Woo", 
        "id": "sg:person.014200540655.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200540655.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment Prediction Research Inc., Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Environment Prediction Research Inc., Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kie-Woung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment Prediction Research Inc., Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Environment Prediction Research Inc., Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jongkhun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea", 
          "id": "http://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Eun-Ji", 
        "id": "sg:person.012056332455.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056332455.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea", 
          "id": "http://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Kyong-Hwan", 
        "id": "sg:person.07606533051.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606533051.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "This article describes a three way inter-comparison of forecast skill on an extended medium-range time scale using the Korea Meteorological Administration (KMA) operational ensemble numerical weather prediction (NWP) systems (i.e., atmosphere-only global ensemble prediction system (EPSG) and ocean-atmosphere coupledEPSG) and KMA operational seasonal prediction system, the Global Seasonal forecast system version 5 (GloSea5). The main motivation is to investigate whether the ensemble NWP system can provide advantage over the existing seasonal prediction system for the extended medium-range forecast (30 days) even with putting extra resources in extended integration or coupling with ocean with NWP system. Two types of evaluation statistics are examined: the basic verification statistics - the anomaly correlation and RMSE of 500-hPa geopotential height and 1.5-meter surface temperature for the global and East Asia area, and the other is the Real-time Multivariate Madden and Julian Oscillation (MJO) indices (RMM1 and RMM2) - which is used to examine the MJO prediction skill. The MJO is regarded as a main source of forecast skill in the tropics linked to the mid-latitude weather on monthly time scale. Under limited number of experiment cases, the coupled NWP extends the forecast skill of the NWP by a few more days, and thereafter such forecast skill is overtaken by that of the seasonal prediction system. At present stage, it seems there is little gain from the coupled NWP even though more resources are put into it. Considering this, the best combination of numerical product guidance for operational forecasters for an extended medium-range is extension of the forecast lead time of the current ensemble NWP (EPSG) up to 20 days and use of the seasonal prediction system (GloSea5) forecast thereafter, though there exists a matter of consistency between the two systems.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13143-017-0035-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136296", 
        "issn": [
          "1976-7633", 
          "1976-7951"
        ], 
        "name": "Asia-Pacific Journal of Atmospheric Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "seasonal prediction system", 
      "forecast skill", 
      "prediction system", 
      "NWP system", 
      "Global Seasonal forecast system version 5", 
      "operational seasonal prediction system", 
      "numerical weather prediction system", 
      "medium-range forecast skill", 
      "medium-range time scale", 
      "mid-latitude weather", 
      "time scales", 
      "medium-range forecasts", 
      "forecast lead time", 
      "weather prediction system", 
      "monthly time scale", 
      "MJO prediction skill", 
      "East Asia area", 
      "Julian Oscillation", 
      "anomaly correlation", 
      "prediction skill", 
      "geopotential height", 
      "operational forecasters", 
      "verification statistics", 
      "extended integration", 
      "surface temperature", 
      "version 5", 
      "NWP", 
      "Asia area", 
      "system forecasts", 
      "lead time", 
      "evaluation statistics", 
      "Ocean", 
      "matter of consistency", 
      "main source", 
      "forecasts", 
      "ensemble", 
      "GloSea5", 
      "MJO", 
      "experiment cases", 
      "tropics", 
      "forecasters", 
      "weather", 
      "scale", 
      "Madden", 
      "RMSE", 
      "oscillations", 
      "matter", 
      "area", 
      "source", 
      "height", 
      "main motivation", 
      "resources", 
      "present stage", 
      "temperature", 
      "extension", 
      "statistics", 
      "limited number", 
      "correlation", 
      "system", 
      "comparison", 
      "stage", 
      "days", 
      "skills", 
      "more days", 
      "time", 
      "consistency", 
      "extra resources", 
      "coupling", 
      "types", 
      "combination", 
      "little gain", 
      "best combination", 
      "integration", 
      "number", 
      "advantages", 
      "cases", 
      "gain", 
      "use", 
      "way", 
      "more resources", 
      "article", 
      "guidance", 
      "motivation"
    ], 
    "name": "Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5", 
    "pagination": "393-401", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091416747"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13143-017-0035-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13143-017-0035-2", 
      "https://app.dimensions.ai/details/publication/pub.1091416747"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13143-017-0035-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13143-017-0035-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13143-017-0035-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13143-017-0035-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13143-017-0035-2'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      20 PREDICATES      108 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13143-017-0035-2 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N4f398e823cdd4cfab6e124538816adbf
5 schema:datePublished 2017-08
6 schema:datePublishedReg 2017-08-01
7 schema:description This article describes a three way inter-comparison of forecast skill on an extended medium-range time scale using the Korea Meteorological Administration (KMA) operational ensemble numerical weather prediction (NWP) systems (i.e., atmosphere-only global ensemble prediction system (EPSG) and ocean-atmosphere coupledEPSG) and KMA operational seasonal prediction system, the Global Seasonal forecast system version 5 (GloSea5). The main motivation is to investigate whether the ensemble NWP system can provide advantage over the existing seasonal prediction system for the extended medium-range forecast (30 days) even with putting extra resources in extended integration or coupling with ocean with NWP system. Two types of evaluation statistics are examined: the basic verification statistics - the anomaly correlation and RMSE of 500-hPa geopotential height and 1.5-meter surface temperature for the global and East Asia area, and the other is the Real-time Multivariate Madden and Julian Oscillation (MJO) indices (RMM1 and RMM2) - which is used to examine the MJO prediction skill. The MJO is regarded as a main source of forecast skill in the tropics linked to the mid-latitude weather on monthly time scale. Under limited number of experiment cases, the coupled NWP extends the forecast skill of the NWP by a few more days, and thereafter such forecast skill is overtaken by that of the seasonal prediction system. At present stage, it seems there is little gain from the coupled NWP even though more resources are put into it. Considering this, the best combination of numerical product guidance for operational forecasters for an extended medium-range is extension of the forecast lead time of the current ensemble NWP (EPSG) up to 20 days and use of the seasonal prediction system (GloSea5) forecast thereafter, though there exists a matter of consistency between the two systems.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N3d1b48b92c62491e93eeca23df20e054
11 Nac0cb6ac31624ddb8a43cf0241e563f4
12 sg:journal.1136296
13 schema:keywords Asia area
14 East Asia area
15 GloSea5
16 Global Seasonal forecast system version 5
17 Julian Oscillation
18 MJO
19 MJO prediction skill
20 Madden
21 NWP
22 NWP system
23 Ocean
24 RMSE
25 advantages
26 anomaly correlation
27 area
28 article
29 best combination
30 cases
31 combination
32 comparison
33 consistency
34 correlation
35 coupling
36 days
37 ensemble
38 evaluation statistics
39 experiment cases
40 extended integration
41 extension
42 extra resources
43 forecast lead time
44 forecast skill
45 forecasters
46 forecasts
47 gain
48 geopotential height
49 guidance
50 height
51 integration
52 lead time
53 limited number
54 little gain
55 main motivation
56 main source
57 matter
58 matter of consistency
59 medium-range forecast skill
60 medium-range forecasts
61 medium-range time scale
62 mid-latitude weather
63 monthly time scale
64 more days
65 more resources
66 motivation
67 number
68 numerical weather prediction system
69 operational forecasters
70 operational seasonal prediction system
71 oscillations
72 prediction skill
73 prediction system
74 present stage
75 resources
76 scale
77 seasonal prediction system
78 skills
79 source
80 stage
81 statistics
82 surface temperature
83 system
84 system forecasts
85 temperature
86 time
87 time scales
88 tropics
89 types
90 use
91 verification statistics
92 version 5
93 way
94 weather
95 weather prediction system
96 schema:name Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5
97 schema:pagination 393-401
98 schema:productId N0c198d9ffe6640e189f2aed05994c7df
99 Nf3792e66ab9c44ad94f1778ab0fe0430
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091416747
101 https://doi.org/10.1007/s13143-017-0035-2
102 schema:sdDatePublished 2022-12-01T06:35
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nab4b2d096bde48dba6ceeeeda5b53819
105 schema:url https://doi.org/10.1007/s13143-017-0035-2
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0abc878d896a4530b1f3bb10dcff1bf8 schema:affiliation grid-institutes:None
110 schema:familyName Lee
111 schema:givenName Kie-Woung
112 rdf:type schema:Person
113 N0c198d9ffe6640e189f2aed05994c7df schema:name dimensions_id
114 schema:value pub.1091416747
115 rdf:type schema:PropertyValue
116 N3d1b48b92c62491e93eeca23df20e054 schema:issueNumber 3
117 rdf:type schema:PublicationIssue
118 N4f398e823cdd4cfab6e124538816adbf rdf:first sg:person.016261336604.16
119 rdf:rest Ne8a5c008f7664b249e6bcf837c5e9cae
120 N792f5619f1c44231a895dda1902bc161 rdf:first sg:person.014200540655.99
121 rdf:rest Nd2fa9a3f5c6645e9b65f414051bf0e4c
122 N7c7f90a36c5a4db9bb5fca0ff32aae29 rdf:first sg:person.012056332455.47
123 rdf:rest Nf538fc7f85904fc0879f2c7bfae42c43
124 Nab4b2d096bde48dba6ceeeeda5b53819 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nac0cb6ac31624ddb8a43cf0241e563f4 schema:volumeNumber 53
127 rdf:type schema:PublicationVolume
128 Nd2080692969f409cbd2743e263ea4335 rdf:first Neeeef3005efc4b74b774ed563e1b96f3
129 rdf:rest N7c7f90a36c5a4db9bb5fca0ff32aae29
130 Nd2fa9a3f5c6645e9b65f414051bf0e4c rdf:first N0abc878d896a4530b1f3bb10dcff1bf8
131 rdf:rest Nd2080692969f409cbd2743e263ea4335
132 Ne8a5c008f7664b249e6bcf837c5e9cae rdf:first sg:person.012605577655.95
133 rdf:rest N792f5619f1c44231a895dda1902bc161
134 Neeeef3005efc4b74b774ed563e1b96f3 schema:affiliation grid-institutes:None
135 schema:familyName Kim
136 schema:givenName Jongkhun
137 rdf:type schema:Person
138 Nf3792e66ab9c44ad94f1778ab0fe0430 schema:name doi
139 schema:value 10.1007/s13143-017-0035-2
140 rdf:type schema:PropertyValue
141 Nf538fc7f85904fc0879f2c7bfae42c43 rdf:first sg:person.07606533051.41
142 rdf:rest rdf:nil
143 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
144 schema:name Earth Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
147 schema:name Atmospheric Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
150 schema:name Oceanography
151 rdf:type schema:DefinedTerm
152 sg:journal.1136296 schema:issn 1976-7633
153 1976-7951
154 schema:name Asia-Pacific Journal of Atmospheric Sciences
155 schema:publisher Springer Nature
156 rdf:type schema:Periodical
157 sg:person.012056332455.47 schema:affiliation grid-institutes:grid.262229.f
158 schema:familyName Song
159 schema:givenName Eun-Ji
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056332455.47
161 rdf:type schema:Person
162 sg:person.012605577655.95 schema:affiliation grid-institutes:grid.453000.2
163 schema:familyName Kim
164 schema:givenName Dong-Joon
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605577655.95
166 rdf:type schema:Person
167 sg:person.014200540655.99 schema:affiliation grid-institutes:grid.453000.2
168 schema:familyName Lee
169 schema:givenName Seung-Woo
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200540655.99
171 rdf:type schema:Person
172 sg:person.016261336604.16 schema:affiliation grid-institutes:grid.453000.2
173 schema:familyName Park
174 schema:givenName Sangwook
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261336604.16
176 rdf:type schema:Person
177 sg:person.07606533051.41 schema:affiliation grid-institutes:grid.262229.f
178 schema:familyName Seo
179 schema:givenName Kyong-Hwan
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606533051.41
181 rdf:type schema:Person
182 grid-institutes:None schema:alternateName Environment Prediction Research Inc., Seoul, Korea
183 schema:name Environment Prediction Research Inc., Seoul, Korea
184 rdf:type schema:Organization
185 grid-institutes:grid.262229.f schema:alternateName Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea
186 schema:name Departmet of Atmospheric Sciences, Division of Earth Environmental Systems, Pusan National University, Pusan, Korea
187 rdf:type schema:Organization
188 grid-institutes:grid.453000.2 schema:alternateName Numerical Model Development Division, Korea Meteorological Administration, 61 Yeouidaebang-ro 16-gil, 07062, Dongjak-gu, Seoul, Korea
189 Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea
190 schema:name Numerical Model Development Division, Korea Meteorological Administration, 61 Yeouidaebang-ro 16-gil, 07062, Dongjak-gu, Seoul, Korea
191 Numerical Model Development Division, Korea Meteorological Administration, Seoul, Korea
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...