Comparison of model noise in AGCM independent ensemble runs and continuous simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Damien Decremer, Chul E. Chung

ABSTRACT

Atmospheric General Circulation models (AGCMs) forced by prescribed sea surface temperature (SST) climatological seasonal cycle simulate interannual variabilities that have cyclic characteristics. Such cyclic characteristics generate relationships between one year and the next in the model output. We document these relationships by computing lag-1-year autocorrelation in hundreds of years of CAM3 and ECHAM5 simulations. The autocorrelation is found to be generally less than 0.2, but contain robust structures. In case of zonal averaged zonal wind and air temperature the winter hemisphere is characterized by negative autocorrelation and the summer hemisphere characterized by positive autocorrelation. The presence of autocorrelation means that an average over a 10∼25 year AGCM simulation in an effort to reduce the influence of interannual variability on externally-driven climate change might not be very effective. In view of this, we investigate if ensemble runs instead of a continuous simulation is more effective in reducing such influences. The reduction gain by using N 1-year long ensemble runs over N years of continuous run is generally less than 30% and mainly limited to the areas where the autocorrelation is positive. We thus conclude that each year in a continuous simulation can generally be treated as largely independent of the next year in an AGCM run with fixed SST forcing. More... »

PAGES

263-270

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13143-014-0014-9

DOI

http://dx.doi.org/10.1007/s13143-014-0014-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020996260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gwangju Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decremer", 
        "givenName": "Damien", 
        "id": "sg:person.01340201215.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gwangju Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea", 
            "Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Room 404, 500-712, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Chul E.", 
        "id": "sg:person.012515511063.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515511063.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2001gl013726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004021831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00703-008-0293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005504213", 
          "https://doi.org/10.1007/s00703-008-0293-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00703-008-0293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005504213", 
          "https://doi.org/10.1007/s00703-008-0293-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3760.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010827095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012861913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013552741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015197825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3820.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016648194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13143-010-0003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008119", 
          "https://doi.org/10.1007/s13143-010-0003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13143-010-0003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008119", 
          "https://doi.org/10.1007/s13143-010-0003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0977-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861148", 
          "https://doi.org/10.1007/s00382-010-0977-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022811882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022853495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-8-433-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026188004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028289719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00287.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035130706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3537.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036151970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3537.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036151970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd013181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036567660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041983275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13143-013-0043-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045119854", 
          "https://doi.org/10.1007/s13143-013-0043-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047124803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047124803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2004)017<2673:iotwae>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052677570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3747.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2596.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454059"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "Atmospheric General Circulation models (AGCMs) forced by prescribed sea surface temperature (SST) climatological seasonal cycle simulate interannual variabilities that have cyclic characteristics. Such cyclic characteristics generate relationships between one year and the next in the model output. We document these relationships by computing lag-1-year autocorrelation in hundreds of years of CAM3 and ECHAM5 simulations. The autocorrelation is found to be generally less than 0.2, but contain robust structures. In case of zonal averaged zonal wind and air temperature the winter hemisphere is characterized by negative autocorrelation and the summer hemisphere characterized by positive autocorrelation. The presence of autocorrelation means that an average over a 10\u223c25 year AGCM simulation in an effort to reduce the influence of interannual variability on externally-driven climate change might not be very effective. In view of this, we investigate if ensemble runs instead of a continuous simulation is more effective in reducing such influences. The reduction gain by using N 1-year long ensemble runs over N years of continuous run is generally less than 30% and mainly limited to the areas where the autocorrelation is positive. We thus conclude that each year in a continuous simulation can generally be treated as largely independent of the next year in an AGCM run with fixed SST forcing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13143-014-0014-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136296", 
        "issn": [
          "1976-7633", 
          "1976-7951"
        ], 
        "name": "Asia-Pacific Journal of Atmospheric Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Comparison of model noise in AGCM independent ensemble runs and continuous simulation", 
    "pagination": "263-270", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6409d0c932fd314d3e5c6f2692b4822c4a9baac59edce843f25f04e297927453"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13143-014-0014-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020996260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13143-014-0014-9", 
      "https://app.dimensions.ai/details/publication/pub.1020996260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13143-014-0014-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13143-014-0014-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13143-014-0014-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13143-014-0014-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13143-014-0014-9'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13143-014-0014-9 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N7752a23dd5e649e8b8c5b5741b8cd1f0
4 schema:citation sg:pub.10.1007/s00382-009-0664-y
5 sg:pub.10.1007/s00382-010-0977-x
6 sg:pub.10.1007/s00703-008-0293-8
7 sg:pub.10.1007/s13143-010-0003-6
8 sg:pub.10.1007/s13143-013-0043-9
9 https://doi.org/10.1002/qj.231
10 https://doi.org/10.1002/qj.652
11 https://doi.org/10.1002/qj.674
12 https://doi.org/10.1029/2001gl013726
13 https://doi.org/10.1029/2009jd013181
14 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2
15 https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2
16 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2
17 https://doi.org/10.1175/1520-0442(2004)017<2673:iotwae>2.0.co;2
18 https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2
19 https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2
20 https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2
21 https://doi.org/10.1175/2008jcli2596.1
22 https://doi.org/10.1175/jcli-d-12-00287.1
23 https://doi.org/10.1175/jcli3537.1
24 https://doi.org/10.1175/jcli3747.1
25 https://doi.org/10.1175/jcli3760.1
26 https://doi.org/10.1175/jcli3820.1
27 https://doi.org/10.5194/cp-8-433-2012
28 schema:datePublished 2014-05
29 schema:datePublishedReg 2014-05-01
30 schema:description Atmospheric General Circulation models (AGCMs) forced by prescribed sea surface temperature (SST) climatological seasonal cycle simulate interannual variabilities that have cyclic characteristics. Such cyclic characteristics generate relationships between one year and the next in the model output. We document these relationships by computing lag-1-year autocorrelation in hundreds of years of CAM3 and ECHAM5 simulations. The autocorrelation is found to be generally less than 0.2, but contain robust structures. In case of zonal averaged zonal wind and air temperature the winter hemisphere is characterized by negative autocorrelation and the summer hemisphere characterized by positive autocorrelation. The presence of autocorrelation means that an average over a 10∼25 year AGCM simulation in an effort to reduce the influence of interannual variability on externally-driven climate change might not be very effective. In view of this, we investigate if ensemble runs instead of a continuous simulation is more effective in reducing such influences. The reduction gain by using N 1-year long ensemble runs over N years of continuous run is generally less than 30% and mainly limited to the areas where the autocorrelation is positive. We thus conclude that each year in a continuous simulation can generally be treated as largely independent of the next year in an AGCM run with fixed SST forcing.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N394f8beddfa64413bf22fbfc6a605e44
35 Nea62b90a8431450b815aa9a8c4262582
36 sg:journal.1136296
37 schema:name Comparison of model noise in AGCM independent ensemble runs and continuous simulation
38 schema:pagination 263-270
39 schema:productId N74ef1c3033834e45a4007112d40e03e0
40 N7f62ccffac3a4a7ea06c0258cb18975b
41 N9364a4afd7ee497e8996771f61d06be7
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020996260
43 https://doi.org/10.1007/s13143-014-0014-9
44 schema:sdDatePublished 2019-04-10T15:03
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ndc3d3f7417744c1dbef26036c7c64d9f
47 schema:url http://link.springer.com/10.1007%2Fs13143-014-0014-9
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N394f8beddfa64413bf22fbfc6a605e44 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 N4502288c9d19420e8b069f826583f7d7 rdf:first sg:person.012515511063.15
54 rdf:rest rdf:nil
55 N74ef1c3033834e45a4007112d40e03e0 schema:name dimensions_id
56 schema:value pub.1020996260
57 rdf:type schema:PropertyValue
58 N7752a23dd5e649e8b8c5b5741b8cd1f0 rdf:first sg:person.01340201215.37
59 rdf:rest N4502288c9d19420e8b069f826583f7d7
60 N7f62ccffac3a4a7ea06c0258cb18975b schema:name doi
61 schema:value 10.1007/s13143-014-0014-9
62 rdf:type schema:PropertyValue
63 N9364a4afd7ee497e8996771f61d06be7 schema:name readcube_id
64 schema:value 6409d0c932fd314d3e5c6f2692b4822c4a9baac59edce843f25f04e297927453
65 rdf:type schema:PropertyValue
66 Ndc3d3f7417744c1dbef26036c7c64d9f schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nea62b90a8431450b815aa9a8c4262582 schema:volumeNumber 50
69 rdf:type schema:PublicationVolume
70 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
71 schema:name Earth Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Geography and Environmental Geoscience
75 rdf:type schema:DefinedTerm
76 sg:journal.1136296 schema:issn 1976-7633
77 1976-7951
78 schema:name Asia-Pacific Journal of Atmospheric Sciences
79 rdf:type schema:Periodical
80 sg:person.012515511063.15 schema:affiliation https://www.grid.ac/institutes/grid.61221.36
81 schema:familyName Chung
82 schema:givenName Chul E.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515511063.15
84 rdf:type schema:Person
85 sg:person.01340201215.37 schema:affiliation https://www.grid.ac/institutes/grid.61221.36
86 schema:familyName Decremer
87 schema:givenName Damien
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37
89 rdf:type schema:Person
90 sg:pub.10.1007/s00382-009-0664-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028771416
91 https://doi.org/10.1007/s00382-009-0664-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
94 https://doi.org/10.1007/s00382-010-0977-x
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00703-008-0293-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005504213
97 https://doi.org/10.1007/s00703-008-0293-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s13143-010-0003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008119
100 https://doi.org/10.1007/s13143-010-0003-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s13143-013-0043-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045119854
103 https://doi.org/10.1007/s13143-013-0043-9
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/qj.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015197825
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/qj.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013552741
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/qj.674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047124803
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/2001gl013726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004021831
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1029/2009jd013181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036567660
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275102
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022811882
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012861913
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1175/1520-0442(2004)017<2673:iotwae>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052677570
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022853495
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041983275
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028289719
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/2008jcli2596.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454059
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1175/jcli-d-12-00287.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035130706
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/jcli3537.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151970
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/jcli3747.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053653975
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1175/jcli3760.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010827095
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/jcli3820.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016648194
140 rdf:type schema:CreativeWork
141 https://doi.org/10.5194/cp-8-433-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026188004
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.61221.36 schema:alternateName Gwangju Institute of Science and Technology
144 schema:name Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
145 Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Room 404, 500-712, Gwangju, Korea
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...