Relationship of EGFR Mutation to Glucose Metabolic Activity and Asphericity of Metabolic Tumor Volume in Lung Adenocarcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-06-14

AUTHORS

Wonseok Whi, Seunggyun Ha, Sungwoo Bae, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Keon Wook Kang, Dong Soo Lee

ABSTRACT

PurposeEGFR-mutation (EGFR-mt) is a major oncogenic driver mutation in lung adenocarcinoma (ADC) and is more often observed in Asian population. In lung ADC, some radiomics parameters of FDG PET have been reported to be associated with EGFR-mt. Here, the associations between EGFR-mt and PET parameters, particularly asphericity (ASP), were evaluated in Asian population.MethodsLung ADC patients who underwent curative surgical resection as the first treatment were retrospectively enrolled. EGFR mutation was defined as exon 19 deletion and exon 21 point mutation and was evaluated using surgical specimens. On FDG PET, image parameters of maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and ASP were obtained. The parameters were compared between EGFR-mt and wild type (EGFR-wt) groups, and the relationships between these PET parameters and EGFR-mt were evaluated.ResultsA total of 64 patients (median age 66 years, M:F = 34:30) were included in the analysis, and 29 (45%) patients showed EGFR-mt. In EGFR-mt group, all the image parameters of SUVmax, MTV, TLG, and ASP were significantly lower than in EGFR-wt group (all adjusted P < 0.050). In univariable logistic regression, SUVmax (P = 0.003) and ASP (P = 0.010) were significant determinants for EGFR-mt, whereas MTV was not (P = 0.690). Multivariate analysis revealed that SUVmax and ASP are independent determinants for EGFR-mt, regardless of inclusion of MTV in the analysis (P < 0.05).ConclusionIn Asian NSCLC/ADC patients, SUVmax, MTV, and ASP on FDG PET are significantly related to EGFR mutation status. Particularly, low SUVmax and ASP are independent determinants for EGFR-mt. More... »

PAGES

175-182

References to SciGraph publications

  • 2011-11-20. The SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) and serum squamous cell carcinoma antigen (SCC-ag) function as prognostic biomarkers in patients with primary cervical cancer in JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
  • 2014-12-01. Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC in BMC CANCER
  • 2014-11-22. Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-07-28. The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-06-26. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer in EUROPEAN RADIOLOGY
  • 2014-07-03. Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-01-07. Correlation of F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value and EGFR mutations in advanced lung adenocarcinoma in MEDICAL ONCOLOGY
  • 2017-10-23. Potential of asphericity as a novel diagnostic parameter in the evaluation of patients with 68Ga-PSMA-HBED-CC PET-positive prostate cancer lesions in EJNMMI RESEARCH
  • 2016-03-16. Correlation between EGFR gene mutation, cytologic tumor markers, 18F-FDG uptake in non-small cell lung cancer in BMC CANCER
  • 2015-10-13. Overall survival benefits of first-line EGFR tyrosine kinase inhibitors in EGFR-mutated non-small-cell lung cancers: a systematic review and meta-analysis in BRITISH JOURNAL OF CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13139-020-00646-7

    DOI

    http://dx.doi.org/10.1007/s13139-020-00646-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1128470076

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32831963


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Whi", 
            "givenName": "Wonseok", 
            "id": "sg:person.010530452343.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine Department of Radiology, Seoul St. Mary\u2019s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.411947.e", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Division of Nuclear Medicine Department of Radiology, Seoul St. Mary\u2019s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ha", 
            "givenName": "Seunggyun", 
            "id": "sg:person.01107464404.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bae", 
            "givenName": "Sungwoo", 
            "id": "sg:person.014743060654.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743060654.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Hongyoon", 
            "id": "sg:person.0631257534.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Cancer Research Institute, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12885-016-2251-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032243913", 
              "https://doi.org/10.1186/s12885-016-2251-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2015.356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042870060", 
              "https://doi.org/10.1038/bjc.2015.356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2833-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004824995", 
              "https://doi.org/10.1007/s00259-014-2833-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00432-011-1092-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025598040", 
              "https://doi.org/10.1007/s00432-011-1092-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2953-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029627450", 
              "https://doi.org/10.1007/s00259-014-2953-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3452-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046085632", 
              "https://doi.org/10.1007/s00259-016-3452-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3269-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004750017", 
              "https://doi.org/10.1007/s00330-014-3269-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12032-008-9160-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012304721", 
              "https://doi.org/10.1007/s12032-008-9160-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-14-896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025651104", 
              "https://doi.org/10.1186/1471-2407-14-896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-017-0333-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092337170", 
              "https://doi.org/10.1186/s13550-017-0333-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-06-14", 
        "datePublishedReg": "2020-06-14", 
        "description": "PurposeEGFR-mutation (EGFR-mt) is a major oncogenic driver mutation in lung adenocarcinoma (ADC) and is more often observed in Asian population. In lung ADC, some radiomics parameters of FDG PET have been reported to be associated with EGFR-mt. Here, the associations between EGFR-mt and PET parameters, particularly asphericity (ASP), were evaluated in Asian population.MethodsLung ADC patients who underwent curative surgical resection as the first treatment were retrospectively enrolled. EGFR mutation was defined as exon 19 deletion and exon 21 point mutation and was evaluated using surgical specimens. On FDG PET, image parameters of maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and ASP were obtained. The parameters were compared between EGFR-mt and wild type (EGFR-wt) groups, and the relationships between these PET parameters and EGFR-mt were evaluated.ResultsA total of 64 patients (median age 66\u00a0years, M:F\u2009=\u200934:30) were included in the analysis, and 29 (45%) patients showed EGFR-mt. In EGFR-mt group, all the image parameters of SUVmax, MTV, TLG, and ASP were significantly lower than in EGFR-wt group (all adjusted P\u2009<\u20090.050). In univariable logistic regression, SUVmax (P\u2009=\u20090.003) and ASP (P\u2009=\u20090.010) were significant determinants for EGFR-mt, whereas MTV was not (P\u2009=\u20090.690). Multivariate analysis revealed that SUVmax and ASP are independent determinants for EGFR-mt, regardless of inclusion of MTV in the analysis (P\u2009<\u20090.05).ConclusionIn Asian NSCLC/ADC patients, SUVmax, MTV, and ASP on FDG PET are significantly related to EGFR mutation status. Particularly, low SUVmax and ASP are independent determinants for EGFR-mt.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13139-020-00646-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1016285", 
            "issn": [
              "1869-3474", 
              "1869-3482"
            ], 
            "name": "Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "metabolic tumor volume", 
          "total lesion glycolysis", 
          "EGFR-mt", 
          "FDG-PET", 
          "lung adenocarcinoma", 
          "ADC patients", 
          "independent determinants", 
          "EGFR mutations", 
          "PET parameters", 
          "tumor volume", 
          "maximal standardized uptake value", 
          "curative surgical resection", 
          "Asian populations", 
          "univariable logistic regression", 
          "EGFR mutation status", 
          "standardized uptake value", 
          "oncogenic driver mutations", 
          "glucose metabolic activity", 
          "major oncogenic driver mutation", 
          "wild-type group", 
          "EGFR WT group", 
          "surgical resection", 
          "lesion glycolysis", 
          "ResultsA total", 
          "low SUVmax", 
          "surgical specimens", 
          "SUVmax", 
          "mutation status", 
          "first treatment", 
          "uptake value", 
          "adenocarcinoma", 
          "patients", 
          "multivariate analysis", 
          "logistic regression", 
          "radiomic parameters", 
          "driver mutations", 
          "type group", 
          "metabolic activity", 
          "significant determinants", 
          "PET", 
          "group", 
          "mutations", 
          "resection", 
          "point mutations", 
          "determinants", 
          "population", 
          "treatment", 
          "total", 
          "association", 
          "asphericity", 
          "glycolysis", 
          "status", 
          "image parameters", 
          "volume", 
          "regression", 
          "deletion", 
          "activity", 
          "relationship", 
          "analysis", 
          "specimens", 
          "inclusion", 
          "parameters", 
          "values"
        ], 
        "name": "Relationship of EGFR Mutation to Glucose Metabolic Activity and Asphericity of Metabolic Tumor Volume in Lung Adenocarcinoma", 
        "pagination": "175-182", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1128470076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13139-020-00646-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32831963"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13139-020-00646-7", 
          "https://app.dimensions.ai/details/publication/pub.1128470076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_855.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13139-020-00646-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-020-00646-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-020-00646-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-020-00646-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-020-00646-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      98 URIs      80 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13139-020-00646-7 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N943438284f4b402ba5f91124de6a8eeb
    4 schema:citation sg:pub.10.1007/s00259-014-2833-4
    5 sg:pub.10.1007/s00259-014-2953-x
    6 sg:pub.10.1007/s00259-016-3452-z
    7 sg:pub.10.1007/s00330-014-3269-8
    8 sg:pub.10.1007/s00432-011-1092-z
    9 sg:pub.10.1007/s12032-008-9160-1
    10 sg:pub.10.1038/bjc.2015.356
    11 sg:pub.10.1186/1471-2407-14-896
    12 sg:pub.10.1186/s12885-016-2251-z
    13 sg:pub.10.1186/s13550-017-0333-9
    14 schema:datePublished 2020-06-14
    15 schema:datePublishedReg 2020-06-14
    16 schema:description PurposeEGFR-mutation (EGFR-mt) is a major oncogenic driver mutation in lung adenocarcinoma (ADC) and is more often observed in Asian population. In lung ADC, some radiomics parameters of FDG PET have been reported to be associated with EGFR-mt. Here, the associations between EGFR-mt and PET parameters, particularly asphericity (ASP), were evaluated in Asian population.MethodsLung ADC patients who underwent curative surgical resection as the first treatment were retrospectively enrolled. EGFR mutation was defined as exon 19 deletion and exon 21 point mutation and was evaluated using surgical specimens. On FDG PET, image parameters of maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and ASP were obtained. The parameters were compared between EGFR-mt and wild type (EGFR-wt) groups, and the relationships between these PET parameters and EGFR-mt were evaluated.ResultsA total of 64 patients (median age 66 years, M:F = 34:30) were included in the analysis, and 29 (45%) patients showed EGFR-mt. In EGFR-mt group, all the image parameters of SUVmax, MTV, TLG, and ASP were significantly lower than in EGFR-wt group (all adjusted P < 0.050). In univariable logistic regression, SUVmax (P = 0.003) and ASP (P = 0.010) were significant determinants for EGFR-mt, whereas MTV was not (P = 0.690). Multivariate analysis revealed that SUVmax and ASP are independent determinants for EGFR-mt, regardless of inclusion of MTV in the analysis (P < 0.05).ConclusionIn Asian NSCLC/ADC patients, SUVmax, MTV, and ASP on FDG PET are significantly related to EGFR mutation status. Particularly, low SUVmax and ASP are independent determinants for EGFR-mt.
    17 schema:genre article
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N7ea228fc052b461d8cd66fc4a3afca10
    20 N9feffe2f6eea47118a51d866a5d27364
    21 sg:journal.1016285
    22 schema:keywords ADC patients
    23 Asian populations
    24 EGFR WT group
    25 EGFR mutation status
    26 EGFR mutations
    27 EGFR-mt
    28 FDG-PET
    29 PET
    30 PET parameters
    31 ResultsA total
    32 SUVmax
    33 activity
    34 adenocarcinoma
    35 analysis
    36 asphericity
    37 association
    38 curative surgical resection
    39 deletion
    40 determinants
    41 driver mutations
    42 first treatment
    43 glucose metabolic activity
    44 glycolysis
    45 group
    46 image parameters
    47 inclusion
    48 independent determinants
    49 lesion glycolysis
    50 logistic regression
    51 low SUVmax
    52 lung adenocarcinoma
    53 major oncogenic driver mutation
    54 maximal standardized uptake value
    55 metabolic activity
    56 metabolic tumor volume
    57 multivariate analysis
    58 mutation status
    59 mutations
    60 oncogenic driver mutations
    61 parameters
    62 patients
    63 point mutations
    64 population
    65 radiomic parameters
    66 regression
    67 relationship
    68 resection
    69 significant determinants
    70 specimens
    71 standardized uptake value
    72 status
    73 surgical resection
    74 surgical specimens
    75 total
    76 total lesion glycolysis
    77 treatment
    78 tumor volume
    79 type group
    80 univariable logistic regression
    81 uptake value
    82 values
    83 volume
    84 wild-type group
    85 schema:name Relationship of EGFR Mutation to Glucose Metabolic Activity and Asphericity of Metabolic Tumor Volume in Lung Adenocarcinoma
    86 schema:pagination 175-182
    87 schema:productId N0275dc62aea74d6d91a879615c72537a
    88 N3c6c1f34fd5f4afaae6e08376c4a0a1e
    89 N99acc2ae29d94571aba073643901df25
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128470076
    91 https://doi.org/10.1007/s13139-020-00646-7
    92 schema:sdDatePublished 2022-10-01T06:47
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Naa4b0e0611ed415bb4e173d1d0409a5e
    95 schema:url https://doi.org/10.1007/s13139-020-00646-7
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N0275dc62aea74d6d91a879615c72537a schema:name pubmed_id
    100 schema:value 32831963
    101 rdf:type schema:PropertyValue
    102 N3c6c1f34fd5f4afaae6e08376c4a0a1e schema:name doi
    103 schema:value 10.1007/s13139-020-00646-7
    104 rdf:type schema:PropertyValue
    105 N652c7da0bcf04ce0b51b3a6a1125f4e1 rdf:first sg:person.01343511335.32
    106 rdf:rest N7a778c3cd141413a8daf6d662dc33493
    107 N7a778c3cd141413a8daf6d662dc33493 rdf:first sg:person.01333472502.31
    108 rdf:rest Ne7e5e412a3b242b98dc64bcc6414b3d0
    109 N7ea228fc052b461d8cd66fc4a3afca10 schema:volumeNumber 54
    110 rdf:type schema:PublicationVolume
    111 N87721f26f6744cdcb65e6a2dd215ef8c rdf:first sg:person.014743060654.45
    112 rdf:rest Ndd0f7f54f9ba41acaf323ea2469ed3e6
    113 N943438284f4b402ba5f91124de6a8eeb rdf:first sg:person.010530452343.90
    114 rdf:rest Ndeade3793c564a2e95fe9be9a4a0ff3e
    115 N99acc2ae29d94571aba073643901df25 schema:name dimensions_id
    116 schema:value pub.1128470076
    117 rdf:type schema:PropertyValue
    118 N9feffe2f6eea47118a51d866a5d27364 schema:issueNumber 4
    119 rdf:type schema:PublicationIssue
    120 Naa4b0e0611ed415bb4e173d1d0409a5e schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 Ndd0f7f54f9ba41acaf323ea2469ed3e6 rdf:first sg:person.0631257534.28
    123 rdf:rest N652c7da0bcf04ce0b51b3a6a1125f4e1
    124 Ndeade3793c564a2e95fe9be9a4a0ff3e rdf:first sg:person.01107464404.68
    125 rdf:rest N87721f26f6744cdcb65e6a2dd215ef8c
    126 Ne7e5e412a3b242b98dc64bcc6414b3d0 rdf:first sg:person.0761746266.86
    127 rdf:rest Nf1a4d6ee839d46d797ddf740d1305155
    128 Nf1a4d6ee839d46d797ddf740d1305155 rdf:first sg:person.015617314175.88
    129 rdf:rest rdf:nil
    130 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Medical and Health Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Clinical Sciences
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1016285 schema:issn 1869-3474
    137 1869-3482
    138 schema:name Nuclear Medicine and Molecular Imaging
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.010530452343.90 schema:affiliation grid-institutes:grid.31501.36
    142 schema:familyName Whi
    143 schema:givenName Wonseok
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90
    145 rdf:type schema:Person
    146 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.411947.e
    147 schema:familyName Ha
    148 schema:givenName Seunggyun
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
    150 rdf:type schema:Person
    151 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
    152 schema:familyName Cheon
    153 schema:givenName Gi Jeong
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    155 rdf:type schema:Person
    156 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
    157 schema:familyName Paeng
    158 schema:givenName Jin Chul
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    160 rdf:type schema:Person
    161 sg:person.014743060654.45 schema:affiliation grid-institutes:grid.31501.36
    162 schema:familyName Bae
    163 schema:givenName Sungwoo
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743060654.45
    165 rdf:type schema:Person
    166 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    167 schema:familyName Lee
    168 schema:givenName Dong Soo
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    170 rdf:type schema:Person
    171 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
    172 schema:familyName Choi
    173 schema:givenName Hongyoon
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
    175 rdf:type schema:Person
    176 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
    177 schema:familyName Kang
    178 schema:givenName Keon Wook
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    180 rdf:type schema:Person
    181 sg:pub.10.1007/s00259-014-2833-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004824995
    182 https://doi.org/10.1007/s00259-014-2833-4
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00259-014-2953-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029627450
    185 https://doi.org/10.1007/s00259-014-2953-x
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00259-016-3452-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046085632
    188 https://doi.org/10.1007/s00259-016-3452-z
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00330-014-3269-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004750017
    191 https://doi.org/10.1007/s00330-014-3269-8
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00432-011-1092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025598040
    194 https://doi.org/10.1007/s00432-011-1092-z
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s12032-008-9160-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012304721
    197 https://doi.org/10.1007/s12032-008-9160-1
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/bjc.2015.356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042870060
    200 https://doi.org/10.1038/bjc.2015.356
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2407-14-896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025651104
    203 https://doi.org/10.1186/1471-2407-14-896
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/s12885-016-2251-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032243913
    206 https://doi.org/10.1186/s12885-016-2251-z
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/s13550-017-0333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092337170
    209 https://doi.org/10.1186/s13550-017-0333-9
    210 rdf:type schema:CreativeWork
    211 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University, Seoul, South Korea
    212 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
    213 Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea
    214 schema:name Cancer Research Institute, Seoul National University, Seoul, South Korea
    215 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
    216 Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea
    217 rdf:type schema:Organization
    218 grid-institutes:grid.411947.e schema:alternateName Division of Nuclear Medicine Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, South Korea
    219 schema:name Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
    220 Division of Nuclear Medicine Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, South Korea
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...