Amyloid PET Quantification Via End-to-End Training of a Deep Learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-14

AUTHORS

Ji-Young Kim, Hoon Young Suh, Hyun Gee Ryoo, Dongkyu Oh, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Keon Wook Kang, Dong Soo Lee

ABSTRACT

PurposeAlthough quantification of amyloid positron emission tomography (PET) is important for evaluating patients with cognitive impairment, its routine clinical use is hampered by complicated preprocessing steps and required MRI. Here, we suggested a one-step quantification based on deep learning using native-space amyloid PET images of different radiotracers acquired from multiple centers.MethodsAmyloid PET data of the Alzheimer Disease Neuroimaging Initiative (ADNI) were used for this study. A training/validation consists of 850 florbetapir PET images. Three hundred sixty-six florbetapir and 89 florbetaben PET images were used as test sets to evaluate the model. Native-space amyloid PET images were used as inputs, and the outputs were standardized uptake value ratios (SUVRs) calculated by the conventional MR-based method.ResultsThe mean absolute errors (MAEs) of the composite SUVR were 0.040, 0.060, and 0.050 of training/validation and test sets for florbetapir PET and a test set for florbetaben PET, respectively. The agreement of amyloid positivity measured by Cohen’s kappa for test sets of florbetapir and florbetaben PET were 0.87 and 0.89, respectively.ConclusionWe suggest a one-step quantification method for amyloid PET via a deep learning model. The model is highly reliable to quantify the amyloid PET regardless of multicenter images and various radiotracers. More... »

PAGES

340-348

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-019-00610-0

DOI

http://dx.doi.org/10.1007/s13139-019-00610-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121784762

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31723364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ji-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Hoon Young", 
        "id": "sg:person.07644213235.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644213235.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryoo", 
        "givenName": "Hyun Gee", 
        "id": "sg:person.0721456335.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721456335.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Dongkyu", 
        "id": "sg:person.0734106454.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734106454.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00401-013-1185-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003393960", 
          "https://doi.org/10.1007/s00401-013-1185-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011711926", 
          "https://doi.org/10.1038/85525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-017-0504-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092713068", 
          "https://doi.org/10.1007/s13139-017-0504-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2753-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030205998", 
          "https://doi.org/10.1007/s00259-014-2753-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-14", 
    "datePublishedReg": "2019-10-14", 
    "description": "PurposeAlthough quantification of amyloid positron emission tomography (PET) is important for evaluating patients with cognitive impairment, its routine clinical use is hampered by complicated preprocessing steps and required MRI. Here, we suggested a one-step quantification based on deep learning using native-space amyloid PET images of different radiotracers acquired from multiple centers.MethodsAmyloid PET data of the Alzheimer Disease Neuroimaging Initiative (ADNI) were used for this study. A training/validation consists of 850 florbetapir PET images. Three hundred sixty-six florbetapir and 89 florbetaben PET images were used as test sets to evaluate the model. Native-space amyloid PET images were used as inputs, and the outputs were standardized uptake value ratios (SUVRs) calculated by the conventional MR-based method.ResultsThe mean absolute errors (MAEs) of the composite SUVR were 0.040, 0.060, and 0.050 of training/validation and test sets for florbetapir PET and a test set for florbetaben PET, respectively. The agreement of amyloid positivity measured by Cohen\u2019s kappa for test sets of florbetapir and florbetaben PET were 0.87 and 0.89, respectively.ConclusionWe suggest a one-step quantification method for amyloid PET via a deep learning model. The model is highly reliable to quantify the amyloid PET regardless of multicenter images and various radiotracers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-019-00610-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "amyloid positron emission tomography", 
      "positron emission tomography", 
      "florbetaben positron emission tomography", 
      "Alzheimer's Disease Neuroimaging Initiative", 
      "amyloid PET images", 
      "florbetapir positron emission tomography", 
      "uptake value ratio", 
      "routine clinical use", 
      "PET images", 
      "Disease Neuroimaging Initiative", 
      "amyloid positivity", 
      "emission tomography", 
      "cognitive impairment", 
      "clinical use", 
      "multiple centers", 
      "conventional MR", 
      "different radiotracers", 
      "florbetapir PET images", 
      "Cohen's kappa", 
      "training/validation", 
      "florbetapir", 
      "deep learning models", 
      "deep learning", 
      "composite SUVR", 
      "radiotracer", 
      "PET data", 
      "kappa", 
      "learning model", 
      "end training", 
      "patients", 
      "learning", 
      "florbetaben PET images", 
      "value ratio", 
      "test set", 
      "SUVR", 
      "tomography", 
      "impairment", 
      "MRI", 
      "positivity", 
      "ConclusionWe", 
      "MR", 
      "training", 
      "center", 
      "study", 
      "quantification", 
      "test", 
      "quantification method", 
      "use", 
      "images", 
      "validation", 
      "data", 
      "model", 
      "ratio", 
      "end", 
      "initiatives", 
      "set", 
      "method", 
      "error", 
      "input", 
      "absolute error", 
      "output", 
      "step", 
      "agreement", 
      "one-step quantification"
    ], 
    "name": "Amyloid PET Quantification Via End-to-End Training of a Deep Learning", 
    "pagination": "340-348", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121784762"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-019-00610-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31723364"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-019-00610-0", 
      "https://app.dimensions.ai/details/publication/pub.1121784762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_830.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-019-00610-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-019-00610-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-019-00610-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-019-00610-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-019-00610-0'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      94 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-019-00610-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nac0849841aa64de4b9b6343aea4f6842
4 schema:citation sg:pub.10.1007/s00259-014-2753-3
5 sg:pub.10.1007/s00401-013-1185-7
6 sg:pub.10.1007/s13139-017-0504-7
7 sg:pub.10.1038/85525
8 sg:pub.10.1038/nature14539
9 schema:datePublished 2019-10-14
10 schema:datePublishedReg 2019-10-14
11 schema:description PurposeAlthough quantification of amyloid positron emission tomography (PET) is important for evaluating patients with cognitive impairment, its routine clinical use is hampered by complicated preprocessing steps and required MRI. Here, we suggested a one-step quantification based on deep learning using native-space amyloid PET images of different radiotracers acquired from multiple centers.MethodsAmyloid PET data of the Alzheimer Disease Neuroimaging Initiative (ADNI) were used for this study. A training/validation consists of 850 florbetapir PET images. Three hundred sixty-six florbetapir and 89 florbetaben PET images were used as test sets to evaluate the model. Native-space amyloid PET images were used as inputs, and the outputs were standardized uptake value ratios (SUVRs) calculated by the conventional MR-based method.ResultsThe mean absolute errors (MAEs) of the composite SUVR were 0.040, 0.060, and 0.050 of training/validation and test sets for florbetapir PET and a test set for florbetaben PET, respectively. The agreement of amyloid positivity measured by Cohen’s kappa for test sets of florbetapir and florbetaben PET were 0.87 and 0.89, respectively.ConclusionWe suggest a one-step quantification method for amyloid PET via a deep learning model. The model is highly reliable to quantify the amyloid PET regardless of multicenter images and various radiotracers.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N3d57ef57b6034da78f691ff2d9811fd6
15 Nf185f7e971c64e35b69f8bfbd09bcfbb
16 sg:journal.1016285
17 schema:keywords Alzheimer's Disease Neuroimaging Initiative
18 Cohen's kappa
19 ConclusionWe
20 Disease Neuroimaging Initiative
21 MR
22 MRI
23 PET data
24 PET images
25 SUVR
26 absolute error
27 agreement
28 amyloid PET images
29 amyloid positivity
30 amyloid positron emission tomography
31 center
32 clinical use
33 cognitive impairment
34 composite SUVR
35 conventional MR
36 data
37 deep learning
38 deep learning models
39 different radiotracers
40 emission tomography
41 end
42 end training
43 error
44 florbetaben PET images
45 florbetaben positron emission tomography
46 florbetapir
47 florbetapir PET images
48 florbetapir positron emission tomography
49 images
50 impairment
51 initiatives
52 input
53 kappa
54 learning
55 learning model
56 method
57 model
58 multiple centers
59 one-step quantification
60 output
61 patients
62 positivity
63 positron emission tomography
64 quantification
65 quantification method
66 radiotracer
67 ratio
68 routine clinical use
69 set
70 step
71 study
72 test
73 test set
74 tomography
75 training
76 training/validation
77 uptake value ratio
78 use
79 validation
80 value ratio
81 schema:name Amyloid PET Quantification Via End-to-End Training of a Deep Learning
82 schema:pagination 340-348
83 schema:productId N1e366319356c41b7abc66ad426159cf1
84 N4cf19b85710046369049d5c69a6fa4d7
85 Nfac49ac8b90644caa536d5701815f9bc
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121784762
87 https://doi.org/10.1007/s13139-019-00610-0
88 schema:sdDatePublished 2022-10-01T06:46
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N0c46525804c940febae0d523b10cf976
91 schema:url https://doi.org/10.1007/s13139-019-00610-0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N003bcaec20944fc89b4c4a7a4d2f37aa rdf:first sg:person.0761746266.86
96 rdf:rest N55b79de787b74d30bd67124117836cc8
97 N0c46525804c940febae0d523b10cf976 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N0daead9897cd4b4aa8c89935bf1114f4 rdf:first sg:person.0631257534.28
100 rdf:rest N4937414c602c4f849b8bd797c8286992
101 N1e366319356c41b7abc66ad426159cf1 schema:name dimensions_id
102 schema:value pub.1121784762
103 rdf:type schema:PropertyValue
104 N3d57ef57b6034da78f691ff2d9811fd6 schema:issueNumber 5
105 rdf:type schema:PublicationIssue
106 N4937414c602c4f849b8bd797c8286992 rdf:first sg:person.01343511335.32
107 rdf:rest N55544836cd4a49e7bcea031fd67bd915
108 N4cf19b85710046369049d5c69a6fa4d7 schema:name pubmed_id
109 schema:value 31723364
110 rdf:type schema:PropertyValue
111 N55544836cd4a49e7bcea031fd67bd915 rdf:first sg:person.01333472502.31
112 rdf:rest N003bcaec20944fc89b4c4a7a4d2f37aa
113 N55b79de787b74d30bd67124117836cc8 rdf:first sg:person.015617314175.88
114 rdf:rest rdf:nil
115 N7304e20cb19e434ab163b4d3b0b53422 rdf:first sg:person.0734106454.51
116 rdf:rest N0daead9897cd4b4aa8c89935bf1114f4
117 N9901fafb125c4c0eb132a41919608f5b schema:affiliation grid-institutes:grid.412484.f
118 schema:familyName Kim
119 schema:givenName Ji-Young
120 rdf:type schema:Person
121 Nac0849841aa64de4b9b6343aea4f6842 rdf:first N9901fafb125c4c0eb132a41919608f5b
122 rdf:rest Nc8f6d4d241664e85ac75002599b02f54
123 Nbffb01fa87f94a218361dc8ccf4b8eea rdf:first sg:person.0721456335.07
124 rdf:rest N7304e20cb19e434ab163b4d3b0b53422
125 Nc8f6d4d241664e85ac75002599b02f54 rdf:first sg:person.07644213235.35
126 rdf:rest Nbffb01fa87f94a218361dc8ccf4b8eea
127 Nf185f7e971c64e35b69f8bfbd09bcfbb schema:volumeNumber 53
128 rdf:type schema:PublicationVolume
129 Nfac49ac8b90644caa536d5701815f9bc schema:name doi
130 schema:value 10.1007/s13139-019-00610-0
131 rdf:type schema:PropertyValue
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1007/s13139-019-00610-0
139 rdf:type schema:MonetaryGrant
140 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1007/s13139-019-00610-0
141 rdf:type schema:MonetaryGrant
142 sg:journal.1016285 schema:issn 1869-3474
143 1869-3482
144 schema:name Nuclear Medicine and Molecular Imaging
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
148 schema:familyName Cheon
149 schema:givenName Gi Jeong
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
151 rdf:type schema:Person
152 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
153 schema:familyName Paeng
154 schema:givenName Jin Chul
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
156 rdf:type schema:Person
157 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
158 schema:familyName Lee
159 schema:givenName Dong Soo
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
161 rdf:type schema:Person
162 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.412484.f
163 schema:familyName Choi
164 schema:givenName Hongyoon
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
166 rdf:type schema:Person
167 sg:person.0721456335.07 schema:affiliation grid-institutes:grid.412484.f
168 schema:familyName Ryoo
169 schema:givenName Hyun Gee
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721456335.07
171 rdf:type schema:Person
172 sg:person.0734106454.51 schema:affiliation grid-institutes:grid.412484.f
173 schema:familyName Oh
174 schema:givenName Dongkyu
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734106454.51
176 rdf:type schema:Person
177 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
178 schema:familyName Kang
179 schema:givenName Keon Wook
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
181 rdf:type schema:Person
182 sg:person.07644213235.35 schema:affiliation grid-institutes:grid.412484.f
183 schema:familyName Suh
184 schema:givenName Hoon Young
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644213235.35
186 rdf:type schema:Person
187 sg:pub.10.1007/s00259-014-2753-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030205998
188 https://doi.org/10.1007/s00259-014-2753-3
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00401-013-1185-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003393960
191 https://doi.org/10.1007/s00401-013-1185-7
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s13139-017-0504-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092713068
194 https://doi.org/10.1007/s13139-017-0504-7
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/85525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011711926
197 https://doi.org/10.1038/85525
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
200 https://doi.org/10.1038/nature14539
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea
203 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 010 Daehak-Ro Jongno-Gu, 03080, Seoul, South Korea
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...