Application of Quantitative Indexes of FDG PET to Treatment Response Evaluation in Indolent Lymphoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-30

AUTHORS

Hyun Joo Kim, Reeree Lee, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Keon Wook Kang

ABSTRACT

PurposeAlthough 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a standard imaging modality for response evaluation in FDG-avid lymphoma, there is a controversy using FDG PET in indolent lymphoma. The purpose of this study was to investigate the effectiveness of quantitative indexes on FDG PET in response evaluation of the indolent lymphoma.MethodsFifty-seven indolent lymphoma patients who completed chemotherapy were retrospectively enrolled. FDG PET/computed tomography (CT) scans were performed at baseline, interim, and end of treatment (EOT). Response was determined by Lugano classification, and progression-free survival (PFS) by follow-up data. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured in the single hottest lesion (target A) or five hottest lesions (target B). Their efficacies regarding response evaluation and PFS prediction were evaluated.ResultsOn EOT PET, SUVmax, and MTV of both targets were well associated with visual analysis. Changes between initial and EOT PET were not significantly different between CR and non-CR groups. On interim PET, SUVmax, and %ΔSUVmax in both targets were significantly different between CR and non-CR groups. For prediction of PFS, most tested indexes were significant on EOT and interim PET, with SUVmax being the most significant prognostic factor.ConclusionQuantitative indexes of FDG PET are well associated with Lugano classification in indolent lymphoma. SUVmax measured in the single hottest lesion can be effective in response evaluation and prognosis prediction on interim and EOT PET. More... »

PAGES

342-349

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-018-0543-8

DOI

http://dx.doi.org/10.1007/s13139-018-0543-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106430691

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30344782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyun Joo", 
        "id": "sg:person.01171704425.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Reeree", 
        "id": "sg:person.012354621316.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354621316.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-010-1539-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028795428", 
          "https://doi.org/10.1007/s00259-010-1539-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep41057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074206447", 
          "https://doi.org/10.1038/srep41057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1685-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007887953", 
          "https://doi.org/10.1007/s00330-009-1685-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-015-0368-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029929784", 
          "https://doi.org/10.1007/s13139-015-0368-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1542-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101319374", 
          "https://doi.org/10.1007/s00261-018-1542-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-30", 
    "datePublishedReg": "2018-08-30", 
    "description": "PurposeAlthough 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a standard imaging modality for response evaluation in FDG-avid lymphoma, there is a controversy using FDG PET in indolent lymphoma. The purpose of this study was to investigate the effectiveness of quantitative indexes on FDG PET in response evaluation of the indolent lymphoma.MethodsFifty-seven indolent lymphoma patients who completed chemotherapy were retrospectively enrolled. FDG PET/computed tomography (CT) scans were performed at baseline, interim, and end of treatment (EOT). Response was determined by Lugano classification, and progression-free survival (PFS) by follow-up data. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured in the single hottest lesion (target A) or five hottest lesions (target B). Their efficacies regarding response evaluation and PFS prediction were evaluated.ResultsOn EOT PET, SUVmax, and MTV of both targets were well associated with visual analysis. Changes between initial and EOT PET were not significantly different between CR and non-CR groups. On interim PET, SUVmax, and %\u0394SUVmax in both targets were significantly different between CR and non-CR groups. For prediction of PFS, most tested indexes were significant on EOT and interim PET, with SUVmax being the most significant prognostic factor.ConclusionQuantitative indexes of FDG PET are well associated with Lugano classification in indolent lymphoma. SUVmax measured in the single hottest lesion can be effective in response evaluation and prognosis prediction on interim and EOT PET.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-018-0543-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "FDG positron emission tomography", 
      "progression-free survival", 
      "end of treatment", 
      "metabolic tumor volume", 
      "positron emission tomography", 
      "interim positron emission tomography", 
      "non-CR groups", 
      "total lesion glycolysis", 
      "indolent lymphoma", 
      "response evaluation", 
      "Lugano classification", 
      "prediction of PFS", 
      "maximum standardized uptake value", 
      "indolent lymphoma patients", 
      "significant prognostic factors", 
      "FDG-PET/", 
      "treatment response evaluation", 
      "standardized uptake value", 
      "FDG-avid lymphomas", 
      "standard imaging modality", 
      "lesion glycolysis", 
      "PFS prediction", 
      "prognostic factors", 
      "lymphoma patients", 
      "tomography scan", 
      "tumor volume", 
      "hot lesions", 
      "uptake value", 
      "lymphoma", 
      "prognosis prediction", 
      "SUVmax", 
      "PET/", 
      "emission tomography", 
      "lesions", 
      "imaging modalities", 
      "quantitative index", 
      "index", 
      "chemotherapy", 
      "patients", 
      "group", 
      "\u0394SUVmax", 
      "evaluation", 
      "PurposeAlthough", 
      "baseline", 
      "efficacy", 
      "survival", 
      "tomography", 
      "target", 
      "scans", 
      "modalities", 
      "treatment", 
      "glycolysis", 
      "visual analysis", 
      "response", 
      "factors", 
      "controversy", 
      "interim", 
      "study", 
      "classification", 
      "volume", 
      "changes", 
      "purpose", 
      "data", 
      "effectiveness", 
      "end", 
      "analysis", 
      "values", 
      "Cr", 
      "prediction", 
      "applications"
    ], 
    "name": "Application of Quantitative Indexes of FDG PET to Treatment Response Evaluation in Indolent Lymphoma", 
    "pagination": "342-349", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106430691"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-018-0543-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30344782"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-018-0543-8", 
      "https://app.dimensions.ai/details/publication/pub.1106430691"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_768.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-018-0543-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0543-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0543-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0543-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0543-8'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      100 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-018-0543-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N3312957547d14a65802780233beca1bb
4 schema:citation sg:pub.10.1007/s00259-010-1539-5
5 sg:pub.10.1007/s00261-018-1542-z
6 sg:pub.10.1007/s00330-009-1685-y
7 sg:pub.10.1007/s13139-015-0368-7
8 sg:pub.10.1038/srep41057
9 schema:datePublished 2018-08-30
10 schema:datePublishedReg 2018-08-30
11 schema:description PurposeAlthough 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a standard imaging modality for response evaluation in FDG-avid lymphoma, there is a controversy using FDG PET in indolent lymphoma. The purpose of this study was to investigate the effectiveness of quantitative indexes on FDG PET in response evaluation of the indolent lymphoma.MethodsFifty-seven indolent lymphoma patients who completed chemotherapy were retrospectively enrolled. FDG PET/computed tomography (CT) scans were performed at baseline, interim, and end of treatment (EOT). Response was determined by Lugano classification, and progression-free survival (PFS) by follow-up data. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured in the single hottest lesion (target A) or five hottest lesions (target B). Their efficacies regarding response evaluation and PFS prediction were evaluated.ResultsOn EOT PET, SUVmax, and MTV of both targets were well associated with visual analysis. Changes between initial and EOT PET were not significantly different between CR and non-CR groups. On interim PET, SUVmax, and %ΔSUVmax in both targets were significantly different between CR and non-CR groups. For prediction of PFS, most tested indexes were significant on EOT and interim PET, with SUVmax being the most significant prognostic factor.ConclusionQuantitative indexes of FDG PET are well associated with Lugano classification in indolent lymphoma. SUVmax measured in the single hottest lesion can be effective in response evaluation and prognosis prediction on interim and EOT PET.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N505fe60d4f5c46a0b9a2ccf216b592a3
15 Ndcebca5283d849aaa83e87eeaa2e9c24
16 sg:journal.1016285
17 schema:keywords Cr
18 FDG positron emission tomography
19 FDG-PET/
20 FDG-avid lymphomas
21 Lugano classification
22 PET/
23 PFS prediction
24 PurposeAlthough
25 SUVmax
26 analysis
27 applications
28 baseline
29 changes
30 chemotherapy
31 classification
32 controversy
33 data
34 effectiveness
35 efficacy
36 emission tomography
37 end
38 end of treatment
39 evaluation
40 factors
41 glycolysis
42 group
43 hot lesions
44 imaging modalities
45 index
46 indolent lymphoma
47 indolent lymphoma patients
48 interim
49 interim positron emission tomography
50 lesion glycolysis
51 lesions
52 lymphoma
53 lymphoma patients
54 maximum standardized uptake value
55 metabolic tumor volume
56 modalities
57 non-CR groups
58 patients
59 positron emission tomography
60 prediction
61 prediction of PFS
62 prognosis prediction
63 prognostic factors
64 progression-free survival
65 purpose
66 quantitative index
67 response
68 response evaluation
69 scans
70 significant prognostic factors
71 standard imaging modality
72 standardized uptake value
73 study
74 survival
75 target
76 tomography
77 tomography scan
78 total lesion glycolysis
79 treatment
80 treatment response evaluation
81 tumor volume
82 uptake value
83 values
84 visual analysis
85 volume
86 ΔSUVmax
87 schema:name Application of Quantitative Indexes of FDG PET to Treatment Response Evaluation in Indolent Lymphoma
88 schema:pagination 342-349
89 schema:productId N66a24b925e6a4ba79e7dda3bb0aae68f
90 Naa0481eeb78a4f0a849a63e27f718705
91 Nb7ef2df7666a432ab0c85507f6881f8f
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106430691
93 https://doi.org/10.1007/s13139-018-0543-8
94 schema:sdDatePublished 2022-09-02T16:02
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N5c320d27ff50428b9709f83caedbc75a
97 schema:url https://doi.org/10.1007/s13139-018-0543-8
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0e27b5b84671436286d612c897202b0e rdf:first sg:person.0631257534.28
102 rdf:rest N4f808d288de649adb95f68df0ce7e3e6
103 N20a5f3bdfb194514b3c614c335ed3c6e rdf:first sg:person.0751347234.39
104 rdf:rest N52de37a76000444a9cf36f71d9cf072a
105 N3312957547d14a65802780233beca1bb rdf:first sg:person.01171704425.04
106 rdf:rest N9d061ed0d46844f59e33529fef6c3a7a
107 N4f808d288de649adb95f68df0ce7e3e6 rdf:first sg:person.01343511335.32
108 rdf:rest Nc6f1030c29ae4a0883b6dc2142298d33
109 N505fe60d4f5c46a0b9a2ccf216b592a3 schema:issueNumber 5
110 rdf:type schema:PublicationIssue
111 N52de37a76000444a9cf36f71d9cf072a rdf:first sg:person.0761746266.86
112 rdf:rest rdf:nil
113 N5c320d27ff50428b9709f83caedbc75a schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N66a24b925e6a4ba79e7dda3bb0aae68f schema:name pubmed_id
116 schema:value 30344782
117 rdf:type schema:PropertyValue
118 N9d061ed0d46844f59e33529fef6c3a7a rdf:first sg:person.012354621316.19
119 rdf:rest N0e27b5b84671436286d612c897202b0e
120 Naa0481eeb78a4f0a849a63e27f718705 schema:name dimensions_id
121 schema:value pub.1106430691
122 rdf:type schema:PropertyValue
123 Naa76500d62de407f8d4aba0317f8dbf0 rdf:first sg:person.015617314175.88
124 rdf:rest N20a5f3bdfb194514b3c614c335ed3c6e
125 Nb7ef2df7666a432ab0c85507f6881f8f schema:name doi
126 schema:value 10.1007/s13139-018-0543-8
127 rdf:type schema:PropertyValue
128 Nc6f1030c29ae4a0883b6dc2142298d33 rdf:first sg:person.01333472502.31
129 rdf:rest Naa76500d62de407f8d4aba0317f8dbf0
130 Ndcebca5283d849aaa83e87eeaa2e9c24 schema:volumeNumber 52
131 rdf:type schema:PublicationVolume
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:journal.1016285 schema:issn 1869-3474
139 1869-3482
140 schema:name Nuclear Medicine and Molecular Imaging
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01171704425.04 schema:affiliation grid-institutes:grid.412484.f
144 schema:familyName Kim
145 schema:givenName Hyun Joo
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04
147 rdf:type schema:Person
148 sg:person.012354621316.19 schema:affiliation grid-institutes:grid.412484.f
149 schema:familyName Lee
150 schema:givenName Reeree
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354621316.19
152 rdf:type schema:Person
153 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
154 schema:familyName Cheon
155 schema:givenName Gi Jeong
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
157 rdf:type schema:Person
158 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
159 schema:familyName Paeng
160 schema:givenName Jin Chul
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
162 rdf:type schema:Person
163 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
164 schema:familyName Lee
165 schema:givenName Dong Soo
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
167 rdf:type schema:Person
168 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.412484.f
169 schema:familyName Choi
170 schema:givenName Hongyoon
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
172 rdf:type schema:Person
173 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
174 schema:familyName Chung
175 schema:givenName June-Key
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
177 rdf:type schema:Person
178 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
179 schema:familyName Kang
180 schema:givenName Keon Wook
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
182 rdf:type schema:Person
183 sg:pub.10.1007/s00259-010-1539-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028795428
184 https://doi.org/10.1007/s00259-010-1539-5
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00261-018-1542-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101319374
187 https://doi.org/10.1007/s00261-018-1542-z
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00330-009-1685-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007887953
190 https://doi.org/10.1007/s00330-009-1685-y
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s13139-015-0368-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029929784
193 https://doi.org/10.1007/s13139-015-0368-7
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/srep41057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074206447
196 https://doi.org/10.1038/srep41057
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
199 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...