Measurement of 68Ga-DOTATOC Uptake in the Thoracic Aorta and Its Correlation with Cardiovascular Risk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05-22

AUTHORS

Reeree Lee, Jihyun Kim, Jin Chul Paeng, Jung Woo Byun, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Keon Wook Kang

ABSTRACT

Purpose68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-d-Phe1-Tyr3-octreotide (68Ga-DOTATOC) is taken up by activated macrophages, which accumulate in active inflammatory lesions. The purpose of this study was to investigate the feasibility of 68Ga-DOTATOC PET/CT for assessment of vulnerable plaque, by evaluating correlation between aortic uptake of 68Ga-DOTATOC and cardiovascular risk factors.MethodsFifty patients with neuroendocrine tumors who underwent 68Ga-DOTATOC PET/CT were retrospectively enrolled. The uptakes in the thoracic aorta were measured by two methods: multi-sample region-of-interest (ROI) method and single volume-of-interest (VOI) method. TBRmax-avg, TBRmean-avg, TBRmax-VOI, and TBRmean-VOI were defined by maximum and mean target-to-background ratio (TBR) from the multi-sample ROI method and the single VOI method, respectively.ResultsFramingham risk score (FRS) exhibited significant correlations with TBRmax-avg and TBRmean-avg, as well as TBRmax-VOI (r = 0.3389–0.4593, P < 0.05 for all). TBRmax-avg and TBRmax-VOI were significantly higher in high FRS group than in low FRS group (1.48 ± 0.21 vs. 1.70 ± 0.17, P < 0.001 for TBRmax-avg and 1.90 ± 0.33 vs. 2.25 ± 0.36, P = 0.002 for TBRmax-VOI). TBR exhibited high correlations between the two measuring methods (r = 0.9684, P < 0.001 for TBRmean-avg and TBRmean-VOI and r = 0.8681, P < 0.001 for TBRmax-avg and TBRmax-VOI).Conclusions68Ga-DOTATOC uptake in the thoracic aorta exhibited a significant correlation with cardiovascular risk factors, which suggests the feasibility of 68Ga-DOTATOC PET for vulnerable plaque imaging, with a simple measurement of the single VOI method that is comparable to the multi-sample ROI-based approach. More... »

PAGES

279-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-018-0524-y

DOI

http://dx.doi.org/10.1007/s13139-018-0524-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104143291

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30100940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Reeree", 
        "id": "sg:person.012354621316.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354621316.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jihyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Byun", 
        "givenName": "Jung Woo", 
        "id": "sg:person.0746052753.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746052753.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrcardio.2014.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952210", 
          "https://doi.org/10.1038/nrcardio.2014.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-2-52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217452", 
          "https://doi.org/10.1186/2191-219x-2-52"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-22", 
    "datePublishedReg": "2018-05-22", 
    "description": "Purpose68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N\u2032,N\u2033,N\u2034-tetraacetic acid-d-Phe1-Tyr3-octreotide (68Ga-DOTATOC) is taken up by activated macrophages, which accumulate in active inflammatory lesions. The purpose of this study was to investigate the feasibility of 68Ga-DOTATOC PET/CT for assessment of vulnerable plaque, by evaluating correlation between aortic uptake of 68Ga-DOTATOC and cardiovascular risk factors.MethodsFifty patients with neuroendocrine tumors who underwent 68Ga-DOTATOC PET/CT were retrospectively enrolled. The uptakes in the thoracic aorta were measured by two methods: multi-sample region-of-interest (ROI) method and single volume-of-interest (VOI) method. TBRmax-avg, TBRmean-avg, TBRmax-VOI, and TBRmean-VOI were defined by maximum and mean target-to-background ratio (TBR) from the multi-sample ROI method and the single VOI method, respectively.ResultsFramingham risk score (FRS) exhibited significant correlations with TBRmax-avg and TBRmean-avg, as well as TBRmax-VOI (r\u2009=\u20090.3389\u20130.4593, P\u2009<\u20090.05 for all). TBRmax-avg and TBRmax-VOI were significantly higher in high FRS group than in low FRS group (1.48\u2009\u00b1\u20090.21 vs. 1.70\u2009\u00b1\u20090.17, P\u2009<\u20090.001 for TBRmax-avg and 1.90\u2009\u00b1\u20090.33 vs. 2.25\u2009\u00b1\u20090.36, P\u2009=\u20090.002 for TBRmax-VOI). TBR exhibited high correlations between the two measuring methods (r\u2009=\u20090.9684, P\u2009<\u20090.001 for TBRmean-avg and TBRmean-VOI and r\u2009=\u20090.8681, P\u2009<\u20090.001 for TBRmax-avg and TBRmax-VOI).Conclusions68Ga-DOTATOC uptake in the thoracic aorta exhibited a significant correlation with cardiovascular risk factors, which suggests the feasibility of 68Ga-DOTATOC PET for vulnerable plaque imaging, with a simple measurement of the single VOI method that is comparable to the multi-sample ROI-based approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-018-0524-y", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "cardiovascular risk factors", 
      "PET/CT", 
      "thoracic aorta", 
      "risk factors", 
      "FRS group", 
      "active inflammatory lesions", 
      "significant correlation", 
      "vulnerable plaque imaging", 
      "cardiovascular risk", 
      "MethodsFifty patients", 
      "aortic uptake", 
      "inflammatory lesions", 
      "interest method", 
      "neuroendocrine tumors", 
      "Tyr3-octreotide", 
      "vulnerable plaques", 
      "risk score", 
      "plaque imaging", 
      "VOI methods", 
      "aorta", 
      "CT", 
      "ROI method", 
      "uptake", 
      "patients", 
      "group", 
      "lesions", 
      "tumors", 
      "background ratio", 
      "plaques", 
      "macrophages", 
      "correlation", 
      "factors", 
      "scores", 
      "risk", 
      "high correlation", 
      "simple measurement", 
      "imaging", 
      "TBR", 
      "PET", 
      "assessment", 
      "target", 
      "study", 
      "feasibility", 
      "volume", 
      "tetraazacyclododecane", 
      "ROI", 
      "purpose", 
      "method", 
      "ratio", 
      "measurements", 
      "single volume", 
      "region", 
      "approach"
    ], 
    "name": "Measurement of 68Ga-DOTATOC Uptake in the Thoracic Aorta and Its Correlation with Cardiovascular Risk", 
    "pagination": "279-286", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104143291"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-018-0524-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30100940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-018-0524-y", 
      "https://app.dimensions.ai/details/publication/pub.1104143291"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-018-0524-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0524-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0524-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0524-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-018-0524-y'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      80 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-018-0524-y schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N5cf718f0a3474b9cb35345a114a19ef1
4 schema:citation sg:pub.10.1038/nrcardio.2014.80
5 sg:pub.10.1186/2191-219x-2-52
6 schema:datePublished 2018-05-22
7 schema:datePublishedReg 2018-05-22
8 schema:description Purpose68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-d-Phe1-Tyr3-octreotide (68Ga-DOTATOC) is taken up by activated macrophages, which accumulate in active inflammatory lesions. The purpose of this study was to investigate the feasibility of 68Ga-DOTATOC PET/CT for assessment of vulnerable plaque, by evaluating correlation between aortic uptake of 68Ga-DOTATOC and cardiovascular risk factors.MethodsFifty patients with neuroendocrine tumors who underwent 68Ga-DOTATOC PET/CT were retrospectively enrolled. The uptakes in the thoracic aorta were measured by two methods: multi-sample region-of-interest (ROI) method and single volume-of-interest (VOI) method. TBRmax-avg, TBRmean-avg, TBRmax-VOI, and TBRmean-VOI were defined by maximum and mean target-to-background ratio (TBR) from the multi-sample ROI method and the single VOI method, respectively.ResultsFramingham risk score (FRS) exhibited significant correlations with TBRmax-avg and TBRmean-avg, as well as TBRmax-VOI (r = 0.3389–0.4593, P < 0.05 for all). TBRmax-avg and TBRmax-VOI were significantly higher in high FRS group than in low FRS group (1.48 ± 0.21 vs. 1.70 ± 0.17, P < 0.001 for TBRmax-avg and 1.90 ± 0.33 vs. 2.25 ± 0.36, P = 0.002 for TBRmax-VOI). TBR exhibited high correlations between the two measuring methods (r = 0.9684, P < 0.001 for TBRmean-avg and TBRmean-VOI and r = 0.8681, P < 0.001 for TBRmax-avg and TBRmax-VOI).Conclusions68Ga-DOTATOC uptake in the thoracic aorta exhibited a significant correlation with cardiovascular risk factors, which suggests the feasibility of 68Ga-DOTATOC PET for vulnerable plaque imaging, with a simple measurement of the single VOI method that is comparable to the multi-sample ROI-based approach.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf Ne0e4093c23ac49d09a49fdff377cd057
12 Nf8923a4b9f524e0480f599b04625fe9f
13 sg:journal.1016285
14 schema:keywords CT
15 FRS group
16 MethodsFifty patients
17 PET
18 PET/CT
19 ROI
20 ROI method
21 TBR
22 Tyr3-octreotide
23 VOI methods
24 active inflammatory lesions
25 aorta
26 aortic uptake
27 approach
28 assessment
29 background ratio
30 cardiovascular risk
31 cardiovascular risk factors
32 correlation
33 factors
34 feasibility
35 group
36 high correlation
37 imaging
38 inflammatory lesions
39 interest method
40 lesions
41 macrophages
42 measurements
43 method
44 neuroendocrine tumors
45 patients
46 plaque imaging
47 plaques
48 purpose
49 ratio
50 region
51 risk
52 risk factors
53 risk score
54 scores
55 significant correlation
56 simple measurement
57 single volume
58 study
59 target
60 tetraazacyclododecane
61 thoracic aorta
62 tumors
63 uptake
64 volume
65 vulnerable plaque imaging
66 vulnerable plaques
67 schema:name Measurement of 68Ga-DOTATOC Uptake in the Thoracic Aorta and Its Correlation with Cardiovascular Risk
68 schema:pagination 279-286
69 schema:productId N087878d245f54eb9930661838c9bcc94
70 N39ca629c6bc244efa7ac8e65a3f4e9f4
71 N91588068309a4fa6b8e361193fa0d2cf
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104143291
73 https://doi.org/10.1007/s13139-018-0524-y
74 schema:sdDatePublished 2022-09-02T16:01
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ndb1d2570986f4240b2307e036b25a4e4
77 schema:url https://doi.org/10.1007/s13139-018-0524-y
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N087878d245f54eb9930661838c9bcc94 schema:name doi
82 schema:value 10.1007/s13139-018-0524-y
83 rdf:type schema:PropertyValue
84 N0af234c8ede34f059d69ad40d6599e49 rdf:first sg:person.01333472502.31
85 rdf:rest Naba5949a1a3a471ba14bb8141cf03a4c
86 N1df4467b26b642da95687708216af70e rdf:first sg:person.0746052753.50
87 rdf:rest N0af234c8ede34f059d69ad40d6599e49
88 N39ca629c6bc244efa7ac8e65a3f4e9f4 schema:name pubmed_id
89 schema:value 30100940
90 rdf:type schema:PropertyValue
91 N529fcdf1135f477da5f7a5c90e9c2186 schema:affiliation grid-institutes:grid.412484.f
92 schema:familyName Kim
93 schema:givenName Jihyun
94 rdf:type schema:Person
95 N5cf718f0a3474b9cb35345a114a19ef1 rdf:first sg:person.012354621316.19
96 rdf:rest N85d0037c77da480a9bd1173c7d8f1763
97 N85d0037c77da480a9bd1173c7d8f1763 rdf:first N529fcdf1135f477da5f7a5c90e9c2186
98 rdf:rest Nd611f896b95a4c7588646ebe855b7521
99 N91588068309a4fa6b8e361193fa0d2cf schema:name dimensions_id
100 schema:value pub.1104143291
101 rdf:type schema:PropertyValue
102 Naba5949a1a3a471ba14bb8141cf03a4c rdf:first sg:person.015617314175.88
103 rdf:rest Nc3bafae292b44a7098f85f2b0b1b30bb
104 Nb3aed9a640f9484f9c620c1a5dad3a88 rdf:first sg:person.0761746266.86
105 rdf:rest rdf:nil
106 Nc3bafae292b44a7098f85f2b0b1b30bb rdf:first sg:person.0751347234.39
107 rdf:rest Nb3aed9a640f9484f9c620c1a5dad3a88
108 Nd611f896b95a4c7588646ebe855b7521 rdf:first sg:person.01343511335.32
109 rdf:rest N1df4467b26b642da95687708216af70e
110 Ndb1d2570986f4240b2307e036b25a4e4 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ne0e4093c23ac49d09a49fdff377cd057 schema:issueNumber 4
113 rdf:type schema:PublicationIssue
114 Nf8923a4b9f524e0480f599b04625fe9f schema:volumeNumber 52
115 rdf:type schema:PublicationVolume
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
120 schema:name Cardiorespiratory Medicine and Haematology
121 rdf:type schema:DefinedTerm
122 sg:journal.1016285 schema:issn 1869-3474
123 1869-3482
124 schema:name Nuclear Medicine and Molecular Imaging
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.012354621316.19 schema:affiliation grid-institutes:grid.412484.f
128 schema:familyName Lee
129 schema:givenName Reeree
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354621316.19
131 rdf:type schema:Person
132 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
133 schema:familyName Cheon
134 schema:givenName Gi Jeong
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
136 rdf:type schema:Person
137 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
138 schema:familyName Paeng
139 schema:givenName Jin Chul
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
141 rdf:type schema:Person
142 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
143 schema:familyName Lee
144 schema:givenName Dong Soo
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
146 rdf:type schema:Person
147 sg:person.0746052753.50 schema:affiliation grid-institutes:grid.412484.f
148 schema:familyName Byun
149 schema:givenName Jung Woo
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746052753.50
151 rdf:type schema:Person
152 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
153 schema:familyName Chung
154 schema:givenName June-Key
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
156 rdf:type schema:Person
157 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
158 schema:familyName Kang
159 schema:givenName Keon Wook
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
161 rdf:type schema:Person
162 sg:pub.10.1038/nrcardio.2014.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952210
163 https://doi.org/10.1038/nrcardio.2014.80
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/2191-219x-2-52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217452
166 https://doi.org/10.1186/2191-219x-2-52
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
169 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...