Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-13

AUTHORS

Ji-In Bang, Yoojoo Lim, Jin Chul Paeng, Sae-Won Han, Sohyun Park, Jung Min Lee, Hyun Joo Kim, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Tae-You Kim, Keon Wook Kang

ABSTRACT

PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30–70 % of maximum SUV with increment 10 %, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38 % between response determined by the PERCIST and the RECIST criteria (κ = 0.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30–50 % of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50 % of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (κ = 0.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30–50 % of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method. More... »

PAGES

147-153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2

DOI

http://dx.doi.org/10.1007/s13139-016-0449-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011903563

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28559939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Ji-In", 
        "id": "sg:person.0632507340.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632507340.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Yoojoo", 
        "id": "sg:person.01302050036.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302050036.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Sae-Won", 
        "id": "sg:person.0626600563.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626600563.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sohyun", 
        "id": "sg:person.012526315744.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526315744.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jung Min", 
        "id": "sg:person.0635655477.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635655477.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyun Joo", 
        "id": "sg:person.01171704425.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-You", 
        "id": "sg:person.012010335604.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010335604.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13139-013-0260-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046932155", 
          "https://doi.org/10.1007/s13139-013-0260-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044088935", 
          "https://doi.org/10.1186/1471-2407-14-408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-015-0405-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053248742", 
          "https://doi.org/10.1186/s12967-015-0405-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-13", 
    "datePublishedReg": "2016-09-13", 
    "description": "PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two\u00a0cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30\u201370\u00a0% of maximum SUV with increment 10\u00a0%, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38\u00a0% between response determined by the PERCIST and the RECIST criteria (\u03ba\u2009=\u20090.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30\u201350\u00a0% of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50\u00a0% of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (\u03ba\u2009=\u20090.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30\u201350\u00a0% of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-016-0449-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "standardized uptake value", 
      "treatment response evaluation", 
      "FDG PET/CT", 
      "maximum standardized uptake value", 
      "metastatic colorectal cancer", 
      "RECIST criteria", 
      "PET/CT", 
      "PERCIST criteria", 
      "colorectal cancer", 
      "response evaluation", 
      "treatment response", 
      "refractory metastatic colorectal cancer patients", 
      "FDG PET/CT scans", 
      "metastatic colorectal cancer patients", 
      "PET/CT scans", 
      "multikinase inhibitor treatment", 
      "RECIST 1.1 criteria", 
      "disease control group", 
      "colorectal cancer patients", 
      "total lesion glycolysis (TLG) values", 
      "margin threshold", 
      "optimal cutoff value", 
      "non-control group", 
      "high diagnostic power", 
      "PurposeFDG PET", 
      "FDG-PET", 
      "cancer patients", 
      "CT scan", 
      "inhibitor treatment", 
      "uptake value", 
      "predictive value", 
      "control group", 
      "cutoff value", 
      "percent change", 
      "cytostatic drugs", 
      "cancer", 
      "hot lesions", 
      "agreement rate", 
      "TLG", 
      "significant differences", 
      "diagnostic power", 
      "Further studies", 
      "patients", 
      "lesions", 
      "CT", 
      "treatment", 
      "high agreement", 
      "group", 
      "response", 
      "PERCIST", 
      "PET", 
      "criteria", 
      "evaluation", 
      "drugs", 
      "scans", 
      "total", 
      "PET index", 
      "standard methods", 
      "threshold", 
      "quantitative methods", 
      "response determination", 
      "quantitative evaluation", 
      "index", 
      "target", 
      "differences", 
      "study", 
      "rate", 
      "values", 
      "changes", 
      "method", 
      "margin", 
      "comparison", 
      "cycle", 
      "terms", 
      "determination", 
      "maximum", 
      "agreement", 
      "measurement target", 
      "power"
    ], 
    "name": "Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer", 
    "pagination": "147-153", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011903563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-016-0449-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28559939"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-016-0449-2", 
      "https://app.dimensions.ai/details/publication/pub.1011903563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-016-0449-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      107 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-016-0449-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nf7a1e1dc365c47c5bb3a5def9ffdc746
4 schema:citation sg:pub.10.1007/s13139-013-0260-2
5 sg:pub.10.1186/1471-2407-14-408
6 sg:pub.10.1186/s12967-015-0405-4
7 schema:datePublished 2016-09-13
8 schema:datePublishedReg 2016-09-13
9 schema:description PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30–70 % of maximum SUV with increment 10 %, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38 % between response determined by the PERCIST and the RECIST criteria (κ = 0.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30–50 % of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50 % of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (κ = 0.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30–50 % of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N87c60755bd874f80930f13513f2e3f95
13 Nac1ec02ea545418095d35f638ea8481c
14 sg:journal.1016285
15 schema:keywords CT
16 CT scan
17 FDG PET/CT
18 FDG PET/CT scans
19 FDG-PET
20 Further studies
21 PERCIST
22 PERCIST criteria
23 PET
24 PET index
25 PET/CT
26 PET/CT scans
27 PurposeFDG PET
28 RECIST 1.1 criteria
29 RECIST criteria
30 TLG
31 agreement
32 agreement rate
33 cancer
34 cancer patients
35 changes
36 colorectal cancer
37 colorectal cancer patients
38 comparison
39 control group
40 criteria
41 cutoff value
42 cycle
43 cytostatic drugs
44 determination
45 diagnostic power
46 differences
47 disease control group
48 drugs
49 evaluation
50 group
51 high agreement
52 high diagnostic power
53 hot lesions
54 index
55 inhibitor treatment
56 lesions
57 margin
58 margin threshold
59 maximum
60 maximum standardized uptake value
61 measurement target
62 metastatic colorectal cancer
63 metastatic colorectal cancer patients
64 method
65 multikinase inhibitor treatment
66 non-control group
67 optimal cutoff value
68 patients
69 percent change
70 power
71 predictive value
72 quantitative evaluation
73 quantitative methods
74 rate
75 refractory metastatic colorectal cancer patients
76 response
77 response determination
78 response evaluation
79 scans
80 significant differences
81 standard methods
82 standardized uptake value
83 study
84 target
85 terms
86 threshold
87 total
88 total lesion glycolysis (TLG) values
89 treatment
90 treatment response
91 treatment response evaluation
92 uptake value
93 values
94 schema:name Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer
95 schema:pagination 147-153
96 schema:productId N1db18b220bce412ba9a8bd13ab72a4bd
97 N4286dd99cc3b4c64b34062138ad43504
98 N62aca908661545bfacdf5073c955352e
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011903563
100 https://doi.org/10.1007/s13139-016-0449-2
101 schema:sdDatePublished 2022-11-24T21:00
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N15eed36dfbc447de9eb900b8aaabe6bb
104 schema:url https://doi.org/10.1007/s13139-016-0449-2
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N15eed36dfbc447de9eb900b8aaabe6bb schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N1db18b220bce412ba9a8bd13ab72a4bd schema:name doi
111 schema:value 10.1007/s13139-016-0449-2
112 rdf:type schema:PropertyValue
113 N28009b0b7f2a48e1beb569634e36dfca rdf:first sg:person.012010335604.34
114 rdf:rest N74cba78a0f4049629bbc055ae2f6a77a
115 N2ed03ffeac70472b832d7d9c3ed489a4 rdf:first sg:person.0751347234.39
116 rdf:rest N28009b0b7f2a48e1beb569634e36dfca
117 N3bf688dbc15c415a862d0d1759366427 rdf:first sg:person.01333472502.31
118 rdf:rest N7d4aa2afe69e4d6c995b31ad4140f8e0
119 N4286dd99cc3b4c64b34062138ad43504 schema:name pubmed_id
120 schema:value 28559939
121 rdf:type schema:PropertyValue
122 N4dc855999deb4e0c871a60896a8887c1 rdf:first sg:person.01302050036.63
123 rdf:rest Nb07a657aa7a34767b0828f9e8aeaa9c8
124 N62aca908661545bfacdf5073c955352e schema:name dimensions_id
125 schema:value pub.1011903563
126 rdf:type schema:PropertyValue
127 N725164063ad9479b9d1d488b543eb540 rdf:first sg:person.0626600563.08
128 rdf:rest Na5b55ac0ca734af7a516ae0b29c51814
129 N74cba78a0f4049629bbc055ae2f6a77a rdf:first sg:person.0761746266.86
130 rdf:rest rdf:nil
131 N7d4aa2afe69e4d6c995b31ad4140f8e0 rdf:first sg:person.015617314175.88
132 rdf:rest N2ed03ffeac70472b832d7d9c3ed489a4
133 N87c60755bd874f80930f13513f2e3f95 schema:volumeNumber 51
134 rdf:type schema:PublicationVolume
135 N8b9c224104fa48d4a19faf1e84daa1ec rdf:first sg:person.0635655477.38
136 rdf:rest Na41533d447c740fdba6eadae9355a071
137 Na41533d447c740fdba6eadae9355a071 rdf:first sg:person.01171704425.04
138 rdf:rest N3bf688dbc15c415a862d0d1759366427
139 Na5b55ac0ca734af7a516ae0b29c51814 rdf:first sg:person.012526315744.67
140 rdf:rest N8b9c224104fa48d4a19faf1e84daa1ec
141 Nac1ec02ea545418095d35f638ea8481c schema:issueNumber 2
142 rdf:type schema:PublicationIssue
143 Nb07a657aa7a34767b0828f9e8aeaa9c8 rdf:first sg:person.01343511335.32
144 rdf:rest N725164063ad9479b9d1d488b543eb540
145 Nf7a1e1dc365c47c5bb3a5def9ffdc746 rdf:first sg:person.0632507340.00
146 rdf:rest N4dc855999deb4e0c871a60896a8887c1
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
151 schema:name Clinical Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1016285 schema:issn 1869-3474
154 1869-3482
155 schema:name Nuclear Medicine and Molecular Imaging
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01171704425.04 schema:affiliation grid-institutes:grid.412484.f
159 schema:familyName Kim
160 schema:givenName Hyun Joo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04
162 rdf:type schema:Person
163 sg:person.012010335604.34 schema:affiliation grid-institutes:grid.412484.f
164 schema:familyName Kim
165 schema:givenName Tae-You
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010335604.34
167 rdf:type schema:Person
168 sg:person.012526315744.67 schema:affiliation grid-institutes:grid.412484.f
169 schema:familyName Park
170 schema:givenName Sohyun
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526315744.67
172 rdf:type schema:Person
173 sg:person.01302050036.63 schema:affiliation grid-institutes:grid.412484.f
174 schema:familyName Lim
175 schema:givenName Yoojoo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302050036.63
177 rdf:type schema:Person
178 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
179 schema:familyName Cheon
180 schema:givenName Gi Jeong
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
182 rdf:type schema:Person
183 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
184 schema:familyName Paeng
185 schema:givenName Jin Chul
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
187 rdf:type schema:Person
188 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
189 schema:familyName Lee
190 schema:givenName Dong Soo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
192 rdf:type schema:Person
193 sg:person.0626600563.08 schema:affiliation grid-institutes:grid.412484.f
194 schema:familyName Han
195 schema:givenName Sae-Won
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626600563.08
197 rdf:type schema:Person
198 sg:person.0632507340.00 schema:affiliation grid-institutes:grid.412484.f
199 schema:familyName Bang
200 schema:givenName Ji-In
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632507340.00
202 rdf:type schema:Person
203 sg:person.0635655477.38 schema:affiliation grid-institutes:grid.412484.f
204 schema:familyName Lee
205 schema:givenName Jung Min
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635655477.38
207 rdf:type schema:Person
208 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
209 schema:familyName Chung
210 schema:givenName June-Key
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
212 rdf:type schema:Person
213 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
214 schema:familyName Kang
215 schema:givenName Keon Wook
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
217 rdf:type schema:Person
218 sg:pub.10.1007/s13139-013-0260-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932155
219 https://doi.org/10.1007/s13139-013-0260-2
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2407-14-408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044088935
222 https://doi.org/10.1186/1471-2407-14-408
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/s12967-015-0405-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053248742
225 https://doi.org/10.1186/s12967-015-0405-4
226 rdf:type schema:CreativeWork
227 grid-institutes:grid.412484.f schema:alternateName Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
228 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
229 schema:name Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
230 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...