Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-13

AUTHORS

Ji-In Bang, Yoojoo Lim, Jin Chul Paeng, Sae-Won Han, Sohyun Park, Jung Min Lee, Hyun Joo Kim, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, Tae-You Kim, Keon Wook Kang

ABSTRACT

PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30–70 % of maximum SUV with increment 10 %, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38 % between response determined by the PERCIST and the RECIST criteria (κ = 0.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30–50 % of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50 % of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (κ = 0.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30–50 % of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method. More... »

PAGES

147-153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2

DOI

http://dx.doi.org/10.1007/s13139-016-0449-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011903563

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28559939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Ji-In", 
        "id": "sg:person.0632507340.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632507340.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Yoojoo", 
        "id": "sg:person.01302050036.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302050036.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Sae-Won", 
        "id": "sg:person.0626600563.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626600563.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sohyun", 
        "id": "sg:person.012526315744.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526315744.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jung Min", 
        "id": "sg:person.0635655477.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635655477.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyun Joo", 
        "id": "sg:person.01171704425.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-You", 
        "id": "sg:person.012010335604.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010335604.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2407-14-408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044088935", 
          "https://doi.org/10.1186/1471-2407-14-408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-015-0405-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053248742", 
          "https://doi.org/10.1186/s12967-015-0405-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-013-0260-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046932155", 
          "https://doi.org/10.1007/s13139-013-0260-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-13", 
    "datePublishedReg": "2016-09-13", 
    "description": "PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two\u00a0cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30\u201370\u00a0% of maximum SUV with increment 10\u00a0%, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38\u00a0% between response determined by the PERCIST and the RECIST criteria (\u03ba\u2009=\u20090.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30\u201350\u00a0% of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50\u00a0% of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (\u03ba\u2009=\u20090.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30\u201350\u00a0% of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-016-0449-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "standardized uptake value", 
      "treatment response evaluation", 
      "FDG PET/CT", 
      "maximum standardized uptake value", 
      "metastatic colorectal cancer", 
      "RECIST criteria", 
      "PET/CT", 
      "PERCIST criteria", 
      "colorectal cancer", 
      "response evaluation", 
      "treatment response", 
      "refractory metastatic colorectal cancer patients", 
      "FDG PET/CT scans", 
      "metastatic colorectal cancer patients", 
      "PET/CT scans", 
      "multikinase inhibitor treatment", 
      "RECIST 1.1 criteria", 
      "disease control group", 
      "colorectal cancer patients", 
      "total lesion glycolysis (TLG) values", 
      "margin threshold", 
      "optimal cutoff value", 
      "non-control group", 
      "high diagnostic power", 
      "PurposeFDG PET", 
      "FDG-PET", 
      "cancer patients", 
      "CT scan", 
      "inhibitor treatment", 
      "uptake value", 
      "predictive value", 
      "control group", 
      "cutoff value", 
      "percent change", 
      "cytostatic drugs", 
      "cancer", 
      "hot lesions", 
      "agreement rate", 
      "TLG", 
      "significant differences", 
      "diagnostic power", 
      "Further studies", 
      "patients", 
      "lesions", 
      "CT", 
      "treatment", 
      "high agreement", 
      "group", 
      "response", 
      "PERCIST", 
      "PET", 
      "criteria", 
      "evaluation", 
      "drugs", 
      "scans", 
      "total", 
      "PET index", 
      "standard methods", 
      "threshold", 
      "quantitative methods", 
      "response determination", 
      "quantitative evaluation", 
      "index", 
      "target", 
      "differences", 
      "study", 
      "rate", 
      "values", 
      "changes", 
      "method", 
      "margin", 
      "comparison", 
      "cycle", 
      "terms", 
      "determination", 
      "maximum", 
      "agreement", 
      "measurement target", 
      "power"
    ], 
    "name": "Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer", 
    "pagination": "147-153", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011903563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-016-0449-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28559939"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-016-0449-2", 
      "https://app.dimensions.ai/details/publication/pub.1011903563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_691.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-016-0449-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0449-2'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      107 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-016-0449-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Ne56b562ce27a4c8abd1df047b3e2936d
4 schema:citation sg:pub.10.1007/s13139-013-0260-2
5 sg:pub.10.1186/1471-2407-14-408
6 sg:pub.10.1186/s12967-015-0405-4
7 schema:datePublished 2016-09-13
8 schema:datePublishedReg 2016-09-13
9 schema:description PurposeFDG PET is effective in treatment response evaluation of cancer. However, there is no standard method for quantitative evaluation of FDG PET, particularly regarding cytostatic drugs. We compared various FDG PET quantitative methods in terms of response determination.MethodsA total of 39 refractory metastatic colorectal cancer patients who received a multikinase inhibitor treatment were included. Baseline and posttreatment FDG PET/CT scans were performed before and two cycles after treatment. Standardized uptake value (SUV) and total lesion glycolysis (TLG) values using various margin thresholds (30–70 % of maximum SUV with increment 10 %, twice mean SUV of blood pool, SUV 3.0, and SUV 4.0) were measured, with measurement target of the hottest lesion or a maximum of five hottest lesions. Treatment response by the PERCIST criteria was also determined. Predictive values of the PET indexes were evaluated in terms of the treatment response determined by the RECIST 1.1 criteria.ResultsThe agreement rate was 38 % between response determined by the PERCIST and the RECIST criteria (κ = 0.381). When patients were classified into disease control group (PR, SD) and non-control group (PD) by the RECIST criteria, percent changes of TLG with various margin thresholds (particularly, 30–50 % of maximum SUV) exhibited significant differences between the two groups, and high diagnostic power for the response by the RECIST criteria. TLG-based criteria, which used a margin threshold of 50 % of maximum SUV, exhibited a high agreement with the RECIST criteria compared with the PERCIST criteria (κ = 0.606).ConclusionIn metastatic colorectal cancer, FDG PET/CT could be effective for treatment response evaluation by using TLG measured by margin thresholds of 30–50 % of maximum SUV. Further studies are warranted regarding the optimal cutoff values for this method.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N79f14d31bc6748e59a49b6e67d0547a3
13 Nbae548f6ed014d8c9816f89afbea9414
14 sg:journal.1016285
15 schema:keywords CT
16 CT scan
17 FDG PET/CT
18 FDG PET/CT scans
19 FDG-PET
20 Further studies
21 PERCIST
22 PERCIST criteria
23 PET
24 PET index
25 PET/CT
26 PET/CT scans
27 PurposeFDG PET
28 RECIST 1.1 criteria
29 RECIST criteria
30 TLG
31 agreement
32 agreement rate
33 cancer
34 cancer patients
35 changes
36 colorectal cancer
37 colorectal cancer patients
38 comparison
39 control group
40 criteria
41 cutoff value
42 cycle
43 cytostatic drugs
44 determination
45 diagnostic power
46 differences
47 disease control group
48 drugs
49 evaluation
50 group
51 high agreement
52 high diagnostic power
53 hot lesions
54 index
55 inhibitor treatment
56 lesions
57 margin
58 margin threshold
59 maximum
60 maximum standardized uptake value
61 measurement target
62 metastatic colorectal cancer
63 metastatic colorectal cancer patients
64 method
65 multikinase inhibitor treatment
66 non-control group
67 optimal cutoff value
68 patients
69 percent change
70 power
71 predictive value
72 quantitative evaluation
73 quantitative methods
74 rate
75 refractory metastatic colorectal cancer patients
76 response
77 response determination
78 response evaluation
79 scans
80 significant differences
81 standard methods
82 standardized uptake value
83 study
84 target
85 terms
86 threshold
87 total
88 total lesion glycolysis (TLG) values
89 treatment
90 treatment response
91 treatment response evaluation
92 uptake value
93 values
94 schema:name Comparison of Quantitative Methods on FDG PET/CT for Treatment Response Evaluation of Metastatic Colorectal Cancer
95 schema:pagination 147-153
96 schema:productId N084e5992659d4ba0a4026550e2060379
97 N94710a7316fb42b7b57ab4b0c83b298b
98 N9b5ce19d0e314f00ba55096ec72cbb7e
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011903563
100 https://doi.org/10.1007/s13139-016-0449-2
101 schema:sdDatePublished 2022-10-01T06:41
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N8a21f6eb663b49b0b797c7dde56a0f1d
104 schema:url https://doi.org/10.1007/s13139-016-0449-2
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N07dc83feeb98466eba7ddaab66f46731 rdf:first sg:person.015617314175.88
109 rdf:rest Nd3a7bf3a2a8f4649a379590ae45ec754
110 N084e5992659d4ba0a4026550e2060379 schema:name doi
111 schema:value 10.1007/s13139-016-0449-2
112 rdf:type schema:PropertyValue
113 N2dc71fc2b85a492db5ac41963033cbc2 rdf:first sg:person.0635655477.38
114 rdf:rest Nd7c6551739484b9c95b554b1c612c8ca
115 N78c2d4b00eb844cda0708f4263c3df21 rdf:first sg:person.012010335604.34
116 rdf:rest Ndf18d98e5af24a4fb5bbea4b5ea64cfd
117 N79f14d31bc6748e59a49b6e67d0547a3 schema:volumeNumber 51
118 rdf:type schema:PublicationVolume
119 N8a21f6eb663b49b0b797c7dde56a0f1d schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N94710a7316fb42b7b57ab4b0c83b298b schema:name dimensions_id
122 schema:value pub.1011903563
123 rdf:type schema:PropertyValue
124 N9b5ce19d0e314f00ba55096ec72cbb7e schema:name pubmed_id
125 schema:value 28559939
126 rdf:type schema:PropertyValue
127 Na67e75b037814373aab71092416a6ce2 rdf:first sg:person.01333472502.31
128 rdf:rest N07dc83feeb98466eba7ddaab66f46731
129 Nbae548f6ed014d8c9816f89afbea9414 schema:issueNumber 2
130 rdf:type schema:PublicationIssue
131 Nc35348f4368147e3abe41f6db3a2a745 rdf:first sg:person.0626600563.08
132 rdf:rest Nebf405b00f264ee2a303d0f4a0c56162
133 Nd3a7bf3a2a8f4649a379590ae45ec754 rdf:first sg:person.0751347234.39
134 rdf:rest N78c2d4b00eb844cda0708f4263c3df21
135 Nd7c6551739484b9c95b554b1c612c8ca rdf:first sg:person.01171704425.04
136 rdf:rest Na67e75b037814373aab71092416a6ce2
137 Ndf18d98e5af24a4fb5bbea4b5ea64cfd rdf:first sg:person.0761746266.86
138 rdf:rest rdf:nil
139 Ne56b562ce27a4c8abd1df047b3e2936d rdf:first sg:person.0632507340.00
140 rdf:rest Ne5f6a8ffa8ae4df9b6a0e047b37e8b2d
141 Ne5f6a8ffa8ae4df9b6a0e047b37e8b2d rdf:first sg:person.01302050036.63
142 rdf:rest Ne8a792c955f843a2837d46a6b80ea778
143 Ne8a792c955f843a2837d46a6b80ea778 rdf:first sg:person.01343511335.32
144 rdf:rest Nc35348f4368147e3abe41f6db3a2a745
145 Nebf405b00f264ee2a303d0f4a0c56162 rdf:first sg:person.012526315744.67
146 rdf:rest N2dc71fc2b85a492db5ac41963033cbc2
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
151 schema:name Clinical Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1016285 schema:issn 1869-3474
154 1869-3482
155 schema:name Nuclear Medicine and Molecular Imaging
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01171704425.04 schema:affiliation grid-institutes:grid.412484.f
159 schema:familyName Kim
160 schema:givenName Hyun Joo
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171704425.04
162 rdf:type schema:Person
163 sg:person.012010335604.34 schema:affiliation grid-institutes:grid.412484.f
164 schema:familyName Kim
165 schema:givenName Tae-You
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010335604.34
167 rdf:type schema:Person
168 sg:person.012526315744.67 schema:affiliation grid-institutes:grid.412484.f
169 schema:familyName Park
170 schema:givenName Sohyun
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526315744.67
172 rdf:type schema:Person
173 sg:person.01302050036.63 schema:affiliation grid-institutes:grid.412484.f
174 schema:familyName Lim
175 schema:givenName Yoojoo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302050036.63
177 rdf:type schema:Person
178 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
179 schema:familyName Cheon
180 schema:givenName Gi Jeong
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
182 rdf:type schema:Person
183 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
184 schema:familyName Paeng
185 schema:givenName Jin Chul
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
187 rdf:type schema:Person
188 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
189 schema:familyName Lee
190 schema:givenName Dong Soo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
192 rdf:type schema:Person
193 sg:person.0626600563.08 schema:affiliation grid-institutes:grid.412484.f
194 schema:familyName Han
195 schema:givenName Sae-Won
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626600563.08
197 rdf:type schema:Person
198 sg:person.0632507340.00 schema:affiliation grid-institutes:grid.412484.f
199 schema:familyName Bang
200 schema:givenName Ji-In
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632507340.00
202 rdf:type schema:Person
203 sg:person.0635655477.38 schema:affiliation grid-institutes:grid.412484.f
204 schema:familyName Lee
205 schema:givenName Jung Min
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635655477.38
207 rdf:type schema:Person
208 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
209 schema:familyName Chung
210 schema:givenName June-Key
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
212 rdf:type schema:Person
213 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
214 schema:familyName Kang
215 schema:givenName Keon Wook
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
217 rdf:type schema:Person
218 sg:pub.10.1007/s13139-013-0260-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932155
219 https://doi.org/10.1007/s13139-013-0260-2
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2407-14-408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044088935
222 https://doi.org/10.1186/1471-2407-14-408
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/s12967-015-0405-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053248742
225 https://doi.org/10.1186/s12967-015-0405-4
226 rdf:type schema:CreativeWork
227 grid-institutes:grid.412484.f schema:alternateName Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
228 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
229 schema:name Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
230 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...