Comparison of Two Different Segmentation Methods on Planar Lung Perfusion Scan with Reference to Quantitative Value on SPECT/CT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-13

AUTHORS

Minseok Suh, Yeon-koo Kang, Seunggyun Ha, Yong-il Kim, Jin Chul Paeng, Gi Jeong Cheon, Samina Park, Young Tae Kim, Dong Soo Lee, E. Edmund Kim, June-Key Chung

ABSTRACT

PurposeUntil now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients.MethodsFifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted.ResultsThe % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation.ConclusionThe PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction. More... »

PAGES

161-168

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-016-0448-3

DOI

http://dx.doi.org/10.1007/s13139-016-0448-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024030766

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28559941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Minseok", 
        "id": "sg:person.01167347716.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167347716.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Yeon-koo", 
        "id": "sg:person.014562370740.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Seunggyun", 
        "id": "sg:person.01107464404.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yong-il", 
        "id": "sg:person.01001337521.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Samina", 
        "id": "sg:person.014674653627.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674653627.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Tae", 
        "id": "sg:person.010257317720.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257317720.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Sciences, University of California, Irvine, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
            "Department of Radiological Sciences, University of California, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "E. Edmund", 
        "id": "sg:person.0656745142.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-004-1558-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032643471", 
          "https://doi.org/10.1007/s00259-004-1558-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09-13", 
    "datePublishedReg": "2016-09-13", 
    "description": "PurposeUntil now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients.MethodsFifty-five lung cancer patients (male:female, 37:18; age, 67.8\u2009\u00b1\u200910.7\u00a0years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99\u00a0m macroaggregated albumin (Tc-99\u00a0m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1\u00a0s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted.ResultsThe % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation.ConclusionThe PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-016-0448-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "SPECT/CT", 
      "lung perfusion scan", 
      "lung cancer patients", 
      "lobar distribution", 
      "perfusion scan", 
      "cancer patients", 
      "lung perfusion single-photon emission", 
      "postoperative lung function prediction", 
      "planar scans", 
      "perfusion single-photon emission", 
      "actual postoperative FEV1", 
      "high concordance", 
      "single photon emission", 
      "lung function prediction", 
      "Spearman correlation analysis", 
      "postoperative FEV1", 
      "postoperative percentage", 
      "expiratory volume", 
      "patients", 
      "CT", 
      "preliminary data", 
      "scans", 
      "photon emission", 
      "good concordance", 
      "concordance", 
      "tomography", 
      "nuclear medicine", 
      "reproducibility analysis", 
      "lobe", 
      "technetium-99", 
      "uptake", 
      "concordance analysis", 
      "FEV1", 
      "ppoFEV1", 
      "posterior method", 
      "PurposeUntil", 
      "low reproducibility", 
      "correlation analysis", 
      "such differences", 
      "injection", 
      "good correlation", 
      "albumin", 
      "medicine", 
      "target region", 
      "percentage", 
      "differences", 
      "analysis", 
      "correlation", 
      "comparison", 
      "volume", 
      "quantitative values", 
      "values", 
      "PO", 
      "method", 
      "data", 
      "reproducibility", 
      "different methods", 
      "reference", 
      "different segmentation methods", 
      "region", 
      "distribution", 
      "society", 
      "AP method", 
      "parameters", 
      "prediction", 
      "segmentation method", 
      "function prediction", 
      "PO method", 
      "emission"
    ], 
    "name": "Comparison of Two Different Segmentation Methods on Planar Lung Perfusion Scan with Reference to Quantitative Value on SPECT/CT", 
    "pagination": "161-168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024030766"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-016-0448-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28559941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-016-0448-3", 
      "https://app.dimensions.ai/details/publication/pub.1024030766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-016-0448-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0448-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0448-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0448-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-016-0448-3'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      95 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-016-0448-3 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N2234a2fea99040e896648013ccc94925
4 schema:citation sg:pub.10.1007/s00259-004-1558-1
5 schema:datePublished 2016-09-13
6 schema:datePublishedReg 2016-09-13
7 schema:description PurposeUntil now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients.MethodsFifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted.ResultsThe % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation.ConclusionThe PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf N8664df36c82a42bbae45df32f705cef4
11 Nae25aff752004c9582a142aaa990fd13
12 sg:journal.1016285
13 schema:keywords AP method
14 CT
15 FEV1
16 PO
17 PO method
18 PurposeUntil
19 SPECT/CT
20 Spearman correlation analysis
21 actual postoperative FEV1
22 albumin
23 analysis
24 cancer patients
25 comparison
26 concordance
27 concordance analysis
28 correlation
29 correlation analysis
30 data
31 differences
32 different methods
33 different segmentation methods
34 distribution
35 emission
36 expiratory volume
37 function prediction
38 good concordance
39 good correlation
40 high concordance
41 injection
42 lobar distribution
43 lobe
44 low reproducibility
45 lung cancer patients
46 lung function prediction
47 lung perfusion scan
48 lung perfusion single-photon emission
49 medicine
50 method
51 nuclear medicine
52 parameters
53 patients
54 percentage
55 perfusion scan
56 perfusion single-photon emission
57 photon emission
58 planar scans
59 posterior method
60 postoperative FEV1
61 postoperative lung function prediction
62 postoperative percentage
63 ppoFEV1
64 prediction
65 preliminary data
66 quantitative values
67 reference
68 region
69 reproducibility
70 reproducibility analysis
71 scans
72 segmentation method
73 single photon emission
74 society
75 such differences
76 target region
77 technetium-99
78 tomography
79 uptake
80 values
81 volume
82 schema:name Comparison of Two Different Segmentation Methods on Planar Lung Perfusion Scan with Reference to Quantitative Value on SPECT/CT
83 schema:pagination 161-168
84 schema:productId N75ac5aaa36174a859e7b137a71b058f0
85 N8d657ad7a04f4e0a86b20536c3e849b7
86 Na8cb467680344b448cbf430c6d3e3b7a
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024030766
88 https://doi.org/10.1007/s13139-016-0448-3
89 schema:sdDatePublished 2022-10-01T06:42
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N3ad65be0801d40e39fcb181cd96c42f1
92 schema:url https://doi.org/10.1007/s13139-016-0448-3
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N17473edb92674323901bdaa042355cd2 rdf:first sg:person.0656745142.66
97 rdf:rest Nd460c976460643848d083bee5bdce4df
98 N20dd04c7ab204207b48704b6b37a2750 rdf:first sg:person.014674653627.64
99 rdf:rest N9e998ca9e91f406396f202de0cfcfb5d
100 N2234a2fea99040e896648013ccc94925 rdf:first sg:person.01167347716.80
101 rdf:rest Ne773f226391c460ba766c7ccdac56c9c
102 N300338af3c6148839d223b79f0417181 rdf:first sg:person.01333472502.31
103 rdf:rest N20dd04c7ab204207b48704b6b37a2750
104 N3ad65be0801d40e39fcb181cd96c42f1 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N75ac5aaa36174a859e7b137a71b058f0 schema:name dimensions_id
107 schema:value pub.1024030766
108 rdf:type schema:PropertyValue
109 N8664df36c82a42bbae45df32f705cef4 schema:issueNumber 2
110 rdf:type schema:PublicationIssue
111 N8d657ad7a04f4e0a86b20536c3e849b7 schema:name doi
112 schema:value 10.1007/s13139-016-0448-3
113 rdf:type schema:PropertyValue
114 N919d4d41952e4ac8b7e72f0205510fc3 rdf:first sg:person.015617314175.88
115 rdf:rest N17473edb92674323901bdaa042355cd2
116 N9e998ca9e91f406396f202de0cfcfb5d rdf:first sg:person.010257317720.84
117 rdf:rest N919d4d41952e4ac8b7e72f0205510fc3
118 Na8cb467680344b448cbf430c6d3e3b7a schema:name pubmed_id
119 schema:value 28559941
120 rdf:type schema:PropertyValue
121 Nae25aff752004c9582a142aaa990fd13 schema:volumeNumber 51
122 rdf:type schema:PublicationVolume
123 Nc915d5ba581346deb92339a9e1fe2ba7 rdf:first sg:person.01343511335.32
124 rdf:rest N300338af3c6148839d223b79f0417181
125 Ncf5b19a6999b4f668dabfd400029419a rdf:first sg:person.01107464404.68
126 rdf:rest Ne16ab00b7d4d42d79df8e1fe8489d0eb
127 Nd460c976460643848d083bee5bdce4df rdf:first sg:person.0751347234.39
128 rdf:rest rdf:nil
129 Ne16ab00b7d4d42d79df8e1fe8489d0eb rdf:first sg:person.01001337521.67
130 rdf:rest Nc915d5ba581346deb92339a9e1fe2ba7
131 Ne773f226391c460ba766c7ccdac56c9c rdf:first sg:person.014562370740.06
132 rdf:rest Ncf5b19a6999b4f668dabfd400029419a
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
137 schema:name Clinical Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1016285 schema:issn 1869-3474
140 1869-3482
141 schema:name Nuclear Medicine and Molecular Imaging
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.31501.36
145 schema:familyName Kim
146 schema:givenName Yong-il
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
148 rdf:type schema:Person
149 sg:person.010257317720.84 schema:affiliation grid-institutes:grid.412484.f
150 schema:familyName Kim
151 schema:givenName Young Tae
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257317720.84
153 rdf:type schema:Person
154 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.31501.36
155 schema:familyName Ha
156 schema:givenName Seunggyun
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
158 rdf:type schema:Person
159 sg:person.01167347716.80 schema:affiliation grid-institutes:grid.31501.36
160 schema:familyName Suh
161 schema:givenName Minseok
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167347716.80
163 rdf:type schema:Person
164 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.412484.f
165 schema:familyName Cheon
166 schema:givenName Gi Jeong
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
168 rdf:type schema:Person
169 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
170 schema:familyName Paeng
171 schema:givenName Jin Chul
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
173 rdf:type schema:Person
174 sg:person.014562370740.06 schema:affiliation grid-institutes:grid.31501.36
175 schema:familyName Kang
176 schema:givenName Yeon-koo
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06
178 rdf:type schema:Person
179 sg:person.014674653627.64 schema:affiliation grid-institutes:grid.412484.f
180 schema:familyName Park
181 schema:givenName Samina
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674653627.64
183 rdf:type schema:Person
184 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
185 schema:familyName Lee
186 schema:givenName Dong Soo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
188 rdf:type schema:Person
189 sg:person.0656745142.66 schema:affiliation grid-institutes:grid.266093.8
190 schema:familyName Kim
191 schema:givenName E. Edmund
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66
193 rdf:type schema:Person
194 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
195 schema:familyName Chung
196 schema:givenName June-Key
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
198 rdf:type schema:Person
199 sg:pub.10.1007/s00259-004-1558-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032643471
200 https://doi.org/10.1007/s00259-004-1558-1
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.266093.8 schema:alternateName Department of Radiological Sciences, University of California, Irvine, CA, USA
203 schema:name Department of Radiological Sciences, University of California, Irvine, CA, USA
204 Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
205 rdf:type schema:Organization
206 grid-institutes:grid.31501.36 schema:alternateName Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
207 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea
208 Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
209 rdf:type schema:Organization
210 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea
211 Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea
212 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehangno, Jongro-gu, 03080, Seoul, South Korea
213 Department of Thosracic Surgery, Seoul National University Hospital, Seoul, South Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...