Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08-29

AUTHORS

Min Young Yoo, Jin Chul Paeng, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, E. Edmund Kim, Keon Wook Kang

ABSTRACT

PurposeC-11 methionine (MET) PET is commonly used for diagnosing high-grade glioma (HGG). Recently, volumetric analysis has been widely applied to oncologic PET imaging. In this study, we investigated the prognostic value of metabolic tumor volume (MTV) on MET PET in HGG.MethodsA total of 30 patients with anaplastic astrocytoma (n = 12) and glioblastoma multiforme (n = 18) who underwent MET PET before treatment (surgery followed by chemo-radiotherapy) were retrospectively enrolled. Maximal tumor-to-normal brain ratio (TNRmax, maximum tumor activity divided by mean of normal tissue) and MTV (volume of tumor tissue that shows uptake >1.3-fold of mean uptake in normal tissue) were measured on MET PET. Adult patients were classified into two subgroups according to Radiation Therapy Oncology Group Recursive Partitioning Analysis (RTOG RPA) classification. Prognostic values of TNRmax, MTV and clinicopathologic factors were evaluated with regard to progression-free survival (PFS).ResultsMedian PFS of all patients was 7.9 months (range 1.0–53.8 months). In univariate analysis, MTV (cutoff 35 cm3) was a significant prognostic factor for PFS (P = 0.01), whereas TNRmax (cutoff 3.3) and RTOG RPA class were not (P = 0.80 and 0.61, respectively). Treatment of surgical resection exhibited a borderline significance (P = 0.06). In multivariate analysis, MTV was the only independent prognostic factor for PFS (P = 0.03).ConclusionMTV on MET PET is a significant and independent prognostic factor for PFS in HGG patients, whereas TNRmax is not. Thus, performing volumetric analysis of MET PET is recommended in HGG for better prognostication. More... »

PAGES

291-297

References to SciGraph publications

  • 2012-11-17. Usefulness of Combined Metabolic–Volumetric Indices of 18F-FDG PET/CT for the Early Prediction of Neoadjuvant Chemotherapy Outcomes in Breast Cancer in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-01-21. Correlation of l-methyl-11C-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas in JOURNAL OF NEURO-ONCOLOGY
  • 2007-10-24. 11C-l-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas in MOLECULAR IMAGING AND BIOLOGY
  • 2009-08-07. Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2004-08-10. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-09-06. Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-07-04. [11C]-l-Methionine positron emission tomography in the management of children and young adults with brain tumors in JOURNAL OF NEURO-ONCOLOGY
  • 2015-03-11. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-12-22. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era in JOURNAL OF NEURO-ONCOLOGY
  • 2010-02-21. Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas in JOURNAL OF NEURO-ONCOLOGY
  • 2015-04-08. Prognostic value of volume-based measurements on 11C-methionine PET in glioma patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13139-015-0362-0

    DOI

    http://dx.doi.org/10.1007/s13139-015-0362-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004683753

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26550048


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoo", 
            "givenName": "Min Young", 
            "id": "sg:person.01313717502.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313717502.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
                "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
                "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiological Sciences, University of California, Irvine, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea", 
                "Department of Radiological Sciences, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "E. Edmund", 
            "id": "sg:person.0656745142.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea", 
                "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11060-009-9953-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043008218", 
              "https://doi.org/10.1007/s11060-009-9953-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3026-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042483529", 
              "https://doi.org/10.1007/s00259-015-3026-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-012-0181-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052133048", 
              "https://doi.org/10.1007/s13139-012-0181-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2903-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007455399", 
              "https://doi.org/10.1007/s00259-014-2903-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11307-007-0115-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028556870", 
              "https://doi.org/10.1007/s11307-007-0115-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-004-1598-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033967191", 
              "https://doi.org/10.1007/s00259-004-1598-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3046-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003573749", 
              "https://doi.org/10.1007/s00259-015-3046-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-010-0129-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025034182", 
              "https://doi.org/10.1007/s11060-010-0129-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1219-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000082347", 
              "https://doi.org/10.1007/s00259-009-1219-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-010-0499-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000761937", 
              "https://doi.org/10.1007/s11060-010-0499-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-010-0117-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015792605", 
              "https://doi.org/10.1007/s11060-010-0117-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-29", 
        "datePublishedReg": "2015-08-29", 
        "description": "PurposeC-11 methionine (MET) PET is commonly used for diagnosing high-grade glioma (HGG). Recently, volumetric analysis has been widely applied to oncologic PET imaging. In this study, we investigated the prognostic value of metabolic tumor volume (MTV) on MET PET in HGG.MethodsA total of 30 patients with anaplastic astrocytoma (n\u2009=\u200912) and glioblastoma multiforme (n\u2009=\u200918) who underwent MET PET before treatment (surgery followed by chemo-radiotherapy) were retrospectively enrolled. Maximal tumor-to-normal brain ratio (TNRmax, maximum tumor activity divided by mean of normal tissue) and MTV (volume of tumor tissue that shows uptake\u2009>1.3-fold of mean uptake in normal tissue) were measured on MET PET. Adult patients were classified into two subgroups according to Radiation Therapy Oncology Group Recursive Partitioning Analysis (RTOG RPA) classification. Prognostic values of TNRmax, MTV and clinicopathologic factors were evaluated with regard to progression-free survival (PFS).ResultsMedian PFS of all patients was 7.9\u00a0months (range 1.0\u201353.8\u00a0months). In univariate analysis, MTV (cutoff 35\u00a0cm3) was a significant prognostic factor for PFS (P\u2009=\u20090.01), whereas TNRmax (cutoff 3.3) and RTOG RPA class were not (P\u2009=\u20090.80 and 0.61, respectively). Treatment of surgical resection exhibited a borderline significance (P\u2009=\u20090.06). In multivariate analysis, MTV was the only independent prognostic factor for PFS (P\u2009=\u20090.03).ConclusionMTV on MET PET is a significant and independent prognostic factor for PFS in HGG patients, whereas TNRmax is not. Thus, performing volumetric analysis of MET PET is recommended in HGG for better prognostication.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13139-015-0362-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1016285", 
            "issn": [
              "1869-3474", 
              "1869-3482"
            ], 
            "name": "Nuclear Medicine and Molecular Imaging", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "keywords": [
          "progression-free survival", 
          "metabolic tumor volume", 
          "high-grade gliomas", 
          "independent prognostic factor", 
          "MET-PET", 
          "prognostic factors", 
          "prognostic value", 
          "tumor volume", 
          "recursive partitioning analysis (RPA) classification", 
          "ResultsMedian progression-free survival", 
          "Predicting Progression-Free Survival", 
          "only independent prognostic factor", 
          "RTOG-RPA class", 
          "significant prognostic factors", 
          "normal brain ratio", 
          "volumetric analysis", 
          "RPA class", 
          "surgical resection", 
          "adult patients", 
          "clinicopathologic factors", 
          "brain ratio", 
          "methionine PET", 
          "borderline significance", 
          "better prognostication", 
          "HGG patients", 
          "univariate analysis", 
          "anaplastic astrocytoma", 
          "maximal tumor", 
          "glioblastoma multiforme", 
          "oncologic PET imaging", 
          "patients", 
          "multivariate analysis", 
          "PET imaging", 
          "gliomas", 
          "survival", 
          "treatment", 
          "PET", 
          "TNRmax", 
          "ConclusionMTV", 
          "resection", 
          "factors", 
          "astrocytomas", 
          "tumors", 
          "multiforme", 
          "prognostication", 
          "analysis classification", 
          "months", 
          "subgroups", 
          "total", 
          "imaging", 
          "volume", 
          "analysis", 
          "significance", 
          "study", 
          "regard", 
          "values", 
          "classification", 
          "ratio", 
          "class"
        ], 
        "name": "Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma", 
        "pagination": "291-297", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004683753"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13139-015-0362-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26550048"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13139-015-0362-0", 
          "https://app.dimensions.ai/details/publication/pub.1004683753"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_658.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13139-015-0362-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-015-0362-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-015-0362-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-015-0362-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-015-0362-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      96 URIs      76 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13139-015-0362-0 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 anzsrc-for:1112
    4 schema:author Nb715339335eb45fbbe563c97ba87fa7b
    5 schema:citation sg:pub.10.1007/s00259-004-1598-6
    6 sg:pub.10.1007/s00259-009-1219-5
    7 sg:pub.10.1007/s00259-014-2903-7
    8 sg:pub.10.1007/s00259-015-3026-5
    9 sg:pub.10.1007/s00259-015-3046-1
    10 sg:pub.10.1007/s11060-009-9953-x
    11 sg:pub.10.1007/s11060-010-0117-9
    12 sg:pub.10.1007/s11060-010-0129-5
    13 sg:pub.10.1007/s11060-010-0499-8
    14 sg:pub.10.1007/s11307-007-0115-2
    15 sg:pub.10.1007/s13139-012-0181-5
    16 schema:datePublished 2015-08-29
    17 schema:datePublishedReg 2015-08-29
    18 schema:description PurposeC-11 methionine (MET) PET is commonly used for diagnosing high-grade glioma (HGG). Recently, volumetric analysis has been widely applied to oncologic PET imaging. In this study, we investigated the prognostic value of metabolic tumor volume (MTV) on MET PET in HGG.MethodsA total of 30 patients with anaplastic astrocytoma (n = 12) and glioblastoma multiforme (n = 18) who underwent MET PET before treatment (surgery followed by chemo-radiotherapy) were retrospectively enrolled. Maximal tumor-to-normal brain ratio (TNRmax, maximum tumor activity divided by mean of normal tissue) and MTV (volume of tumor tissue that shows uptake >1.3-fold of mean uptake in normal tissue) were measured on MET PET. Adult patients were classified into two subgroups according to Radiation Therapy Oncology Group Recursive Partitioning Analysis (RTOG RPA) classification. Prognostic values of TNRmax, MTV and clinicopathologic factors were evaluated with regard to progression-free survival (PFS).ResultsMedian PFS of all patients was 7.9 months (range 1.0–53.8 months). In univariate analysis, MTV (cutoff 35 cm3) was a significant prognostic factor for PFS (P = 0.01), whereas TNRmax (cutoff 3.3) and RTOG RPA class were not (P = 0.80 and 0.61, respectively). Treatment of surgical resection exhibited a borderline significance (P = 0.06). In multivariate analysis, MTV was the only independent prognostic factor for PFS (P = 0.03).ConclusionMTV on MET PET is a significant and independent prognostic factor for PFS in HGG patients, whereas TNRmax is not. Thus, performing volumetric analysis of MET PET is recommended in HGG for better prognostication.
    19 schema:genre article
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N8e037bab4b084b0b96dcc938128783ac
    22 Ne3e1a37dd59b4b48a55174f8fa2270e1
    23 sg:journal.1016285
    24 schema:keywords ConclusionMTV
    25 HGG patients
    26 MET-PET
    27 PET
    28 PET imaging
    29 Predicting Progression-Free Survival
    30 RPA class
    31 RTOG-RPA class
    32 ResultsMedian progression-free survival
    33 TNRmax
    34 adult patients
    35 analysis
    36 analysis classification
    37 anaplastic astrocytoma
    38 astrocytomas
    39 better prognostication
    40 borderline significance
    41 brain ratio
    42 class
    43 classification
    44 clinicopathologic factors
    45 factors
    46 glioblastoma multiforme
    47 gliomas
    48 high-grade gliomas
    49 imaging
    50 independent prognostic factor
    51 maximal tumor
    52 metabolic tumor volume
    53 methionine PET
    54 months
    55 multiforme
    56 multivariate analysis
    57 normal brain ratio
    58 oncologic PET imaging
    59 only independent prognostic factor
    60 patients
    61 prognostic factors
    62 prognostic value
    63 prognostication
    64 progression-free survival
    65 ratio
    66 recursive partitioning analysis (RPA) classification
    67 regard
    68 resection
    69 significance
    70 significant prognostic factors
    71 study
    72 subgroups
    73 surgical resection
    74 survival
    75 total
    76 treatment
    77 tumor volume
    78 tumors
    79 univariate analysis
    80 values
    81 volume
    82 volumetric analysis
    83 schema:name Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma
    84 schema:pagination 291-297
    85 schema:productId N97eed7a5c215436da83b0500f19e1605
    86 Nee8db40817d84dd191fd6b44fe32180c
    87 Nfdefbe1fa14e42eba5a831daa94f20eb
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004683753
    89 https://doi.org/10.1007/s13139-015-0362-0
    90 schema:sdDatePublished 2022-10-01T06:40
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Nad1448eef3694c818d514e1596f16467
    93 schema:url https://doi.org/10.1007/s13139-015-0362-0
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N089023ece46847aa85d49006268fa602 rdf:first sg:person.0751347234.39
    98 rdf:rest Nbb8446ce8d284cafa130d0ec97d2b647
    99 N1254b898e79b45a59a290c63c1e78a04 rdf:first sg:person.01343511335.32
    100 rdf:rest N68c54e913df34449845140ad7f8c1cc1
    101 N5b8d0c10bfd34f508c01b02e129af6c6 rdf:first sg:person.0761746266.86
    102 rdf:rest rdf:nil
    103 N68c54e913df34449845140ad7f8c1cc1 rdf:first sg:person.01333472502.31
    104 rdf:rest Nbe9e933429014c7cb27e2c176e44d107
    105 N8e037bab4b084b0b96dcc938128783ac schema:issueNumber 4
    106 rdf:type schema:PublicationIssue
    107 N97eed7a5c215436da83b0500f19e1605 schema:name doi
    108 schema:value 10.1007/s13139-015-0362-0
    109 rdf:type schema:PropertyValue
    110 Nad1448eef3694c818d514e1596f16467 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Nb715339335eb45fbbe563c97ba87fa7b rdf:first sg:person.01313717502.49
    113 rdf:rest N1254b898e79b45a59a290c63c1e78a04
    114 Nbb8446ce8d284cafa130d0ec97d2b647 rdf:first sg:person.0656745142.66
    115 rdf:rest N5b8d0c10bfd34f508c01b02e129af6c6
    116 Nbe9e933429014c7cb27e2c176e44d107 rdf:first sg:person.015617314175.88
    117 rdf:rest N089023ece46847aa85d49006268fa602
    118 Ne3e1a37dd59b4b48a55174f8fa2270e1 schema:volumeNumber 49
    119 rdf:type schema:PublicationVolume
    120 Nee8db40817d84dd191fd6b44fe32180c schema:name pubmed_id
    121 schema:value 26550048
    122 rdf:type schema:PropertyValue
    123 Nfdefbe1fa14e42eba5a831daa94f20eb schema:name dimensions_id
    124 schema:value pub.1004683753
    125 rdf:type schema:PropertyValue
    126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Medical and Health Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Clinical Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Oncology and Carcinogenesis
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1016285 schema:issn 1869-3474
    136 1869-3482
    137 schema:name Nuclear Medicine and Molecular Imaging
    138 schema:publisher Springer Nature
    139 rdf:type schema:Periodical
    140 sg:person.01313717502.49 schema:affiliation grid-institutes:grid.412484.f
    141 schema:familyName Yoo
    142 schema:givenName Min Young
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313717502.49
    144 rdf:type schema:Person
    145 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
    146 schema:familyName Cheon
    147 schema:givenName Gi Jeong
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    149 rdf:type schema:Person
    150 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
    151 schema:familyName Paeng
    152 schema:givenName Jin Chul
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    154 rdf:type schema:Person
    155 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    156 schema:familyName Lee
    157 schema:givenName Dong Soo
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    159 rdf:type schema:Person
    160 sg:person.0656745142.66 schema:affiliation grid-institutes:grid.266093.8
    161 schema:familyName Kim
    162 schema:givenName E. Edmund
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66
    164 rdf:type schema:Person
    165 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    166 schema:familyName Chung
    167 schema:givenName June-Key
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    169 rdf:type schema:Person
    170 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
    171 schema:familyName Kang
    172 schema:givenName Keon Wook
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s00259-004-1598-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033967191
    176 https://doi.org/10.1007/s00259-004-1598-6
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00259-009-1219-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000082347
    179 https://doi.org/10.1007/s00259-009-1219-5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00259-014-2903-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007455399
    182 https://doi.org/10.1007/s00259-014-2903-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00259-015-3026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042483529
    185 https://doi.org/10.1007/s00259-015-3026-5
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00259-015-3046-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003573749
    188 https://doi.org/10.1007/s00259-015-3046-1
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11060-009-9953-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043008218
    191 https://doi.org/10.1007/s11060-009-9953-x
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11060-010-0117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015792605
    194 https://doi.org/10.1007/s11060-010-0117-9
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11060-010-0129-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025034182
    197 https://doi.org/10.1007/s11060-010-0129-5
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11060-010-0499-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000761937
    200 https://doi.org/10.1007/s11060-010-0499-8
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s11307-007-0115-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028556870
    203 https://doi.org/10.1007/s11307-007-0115-2
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s13139-012-0181-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052133048
    206 https://doi.org/10.1007/s13139-012-0181-5
    207 rdf:type schema:CreativeWork
    208 grid-institutes:grid.266093.8 schema:alternateName Department of Radiological Sciences, University of California, Irvine, CA, USA
    209 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
    210 Department of Radiological Sciences, University of California, Irvine, CA, USA
    211 rdf:type schema:Organization
    212 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
    213 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
    214 schema:name Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
    215 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
    216 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea
    217 rdf:type schema:Organization
    218 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea
    219 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, 110-744, Seoul, Jongno-gu,, Korea
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...