Direct Determination of Lean Body Mass by CT in F-18 FDG PET/CT Studies: Comparison with Estimates Using Predictive Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-07

AUTHORS

Chang Guhn Kim, Woo Hyoung Kim, Myoung Hyoun Kim, Dae-Weung Kim

ABSTRACT

PurposeThe purpose of this study was to estimate lean body mass (LBM) using CT (LBM CTs) and compare the results with LBM estimates of four different predictive equations (LBM PEs) to assess whether LBM CTs and LBM PEs can be used interchangeably for SUV normalization.MethodsWhole-body F-18 FDG PET/CT studies were conducted on 392 patients. LBM CT1 is modified adipose tissue-free body mass, and LBM CT2 is adipose tissue-free body mass. Four different PEs were used for comparison (LBM PE1–4). Agreement between the two measurement methods was assessed by Bland-Altman analysis. We calculated the difference between two methods (bias), the percentage of difference, and the limits of agreement, expressed as a percentage.ResultsFor LBM CTs vs. LBM PEs, except LBM PE3, the ranges of biases and limits of agreement were −3.77 to 3.81 kg and 26.60–35.05 %, respectively, indicating the wide limits of agreement and differing magnitudes of bias. For LBM CTs vs. LBM PE3, LBM PE3 had wider limits of agreement and greater positive bias (44.28–46.19 % and 10.49 to 14.04 kg, respectively), showing unacceptably large discrepancies between LBM CTs and LBM PE3.ConclusionThis study demonstrated that there are substantial discrepancies between individual LBM CTs and LBM PEs, and this should be taken into account when LBM CTs and LBM PEs are used interchangeably between patients. More... »

PAGES

98-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-013-0207-7

DOI

http://dx.doi.org/10.1007/s13139-013-0207-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035657275

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24900089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
            "Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Chang Guhn", 
        "id": "sg:person.01155206462.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155206462.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410899.d", 
          "name": [
            "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Woo Hyoung", 
        "id": "sg:person.010757656667.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757656667.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410899.d", 
          "name": [
            "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Myoung Hyoun", 
        "id": "sg:person.0641764442.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641764442.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea", 
            "Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dae-Weung", 
        "id": "sg:person.01000020651.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000020651.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-002-0974-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028673386", 
          "https://doi.org/10.1007/s00259-002-0974-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-200039030-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030572913", 
          "https://doi.org/10.2165/00003088-200039030-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-012-0175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037721026", 
          "https://doi.org/10.1007/s13139-012-0175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-003-0025-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853531", 
          "https://doi.org/10.1007/s00592-003-0025-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-012-0146-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043302309", 
          "https://doi.org/10.1007/s13139-012-0146-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199426040-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017629041", 
          "https://doi.org/10.2165/00003088-199426040-00005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-07", 
    "datePublishedReg": "2013-05-07", 
    "description": "PurposeThe purpose of this study was to estimate lean body mass (LBM) using CT (LBM CTs) and compare the results with LBM estimates of four different predictive equations (LBM PEs) to assess whether LBM CTs and LBM PEs can be used interchangeably for SUV normalization.MethodsWhole-body F-18 FDG PET/CT studies were conducted on 392 patients. LBM CT1 is modified adipose tissue-free body mass, and LBM CT2 is adipose tissue-free body mass. Four different PEs were used for comparison (LBM PE1\u20134). Agreement between the two measurement methods was assessed by Bland-Altman analysis. We calculated the difference between two methods (bias), the percentage of difference, and the limits of agreement, expressed as a percentage.ResultsFor LBM CTs vs. LBM PEs, except LBM PE3, the ranges of biases and limits of agreement were \u22123.77 to 3.81\u00a0kg and 26.60\u201335.05\u00a0%, respectively, indicating the wide limits of agreement and differing magnitudes of bias. For LBM CTs vs. LBM PE3, LBM PE3 had wider limits of agreement and greater positive bias (44.28\u201346.19\u00a0% and 10.49 to 14.04\u00a0kg, respectively), showing unacceptably large discrepancies between LBM CTs and LBM PE3.ConclusionThis study demonstrated that there are substantial discrepancies between individual LBM CTs and LBM PEs, and this should be taken into account when LBM CTs and LBM PEs are used interchangeably between patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13139-013-0207-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "lean body mass", 
      "FDG PET/CT studies", 
      "PET/CT studies", 
      "limits of agreement", 
      "CT studies", 
      "body mass", 
      "Bland-Altman analysis", 
      "PurposeThe purpose", 
      "CT", 
      "SUV normalization", 
      "percentage of difference", 
      "different predictive equations", 
      "patients", 
      "wide limits", 
      "predictive equations", 
      "study", 
      "percentage", 
      "PE", 
      "differences", 
      "CT1", 
      "magnitude of bias", 
      "mass", 
      "CT2", 
      "greater positive bias", 
      "normalization", 
      "substantial discrepancies", 
      "PE3", 
      "bias", 
      "comparison", 
      "discrepancy", 
      "purpose", 
      "range of biases", 
      "method", 
      "analysis", 
      "results", 
      "estimates", 
      "different PEs", 
      "large discrepancies", 
      "magnitude", 
      "positive bias", 
      "limit", 
      "determination", 
      "agreement", 
      "measurement method", 
      "range", 
      "biases", 
      "account", 
      "direct determination", 
      "equations"
    ], 
    "name": "Direct Determination of Lean Body Mass by CT in F-18 FDG PET/CT Studies: Comparison with Estimates Using Predictive Equations", 
    "pagination": "98-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035657275"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-013-0207-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24900089"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-013-0207-7", 
      "https://app.dimensions.ai/details/publication/pub.1035657275"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_614.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13139-013-0207-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-013-0207-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-013-0207-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-013-0207-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-013-0207-7'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      81 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-013-0207-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N745fad8877054a109c680beb9559e800
4 schema:citation sg:pub.10.1007/s00259-002-0974-3
5 sg:pub.10.1007/s00592-003-0025-y
6 sg:pub.10.1007/s13139-012-0146-8
7 sg:pub.10.1007/s13139-012-0175-3
8 sg:pub.10.2165/00003088-199426040-00005
9 sg:pub.10.2165/00003088-200039030-00004
10 schema:datePublished 2013-05-07
11 schema:datePublishedReg 2013-05-07
12 schema:description PurposeThe purpose of this study was to estimate lean body mass (LBM) using CT (LBM CTs) and compare the results with LBM estimates of four different predictive equations (LBM PEs) to assess whether LBM CTs and LBM PEs can be used interchangeably for SUV normalization.MethodsWhole-body F-18 FDG PET/CT studies were conducted on 392 patients. LBM CT1 is modified adipose tissue-free body mass, and LBM CT2 is adipose tissue-free body mass. Four different PEs were used for comparison (LBM PE1–4). Agreement between the two measurement methods was assessed by Bland-Altman analysis. We calculated the difference between two methods (bias), the percentage of difference, and the limits of agreement, expressed as a percentage.ResultsFor LBM CTs vs. LBM PEs, except LBM PE3, the ranges of biases and limits of agreement were −3.77 to 3.81 kg and 26.60–35.05 %, respectively, indicating the wide limits of agreement and differing magnitudes of bias. For LBM CTs vs. LBM PE3, LBM PE3 had wider limits of agreement and greater positive bias (44.28–46.19 % and 10.49 to 14.04 kg, respectively), showing unacceptably large discrepancies between LBM CTs and LBM PE3.ConclusionThis study demonstrated that there are substantial discrepancies between individual LBM CTs and LBM PEs, and this should be taken into account when LBM CTs and LBM PEs are used interchangeably between patients.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N1e278afe931249e1b8a284ead09619ba
17 Nab2e2506a43546ecbe08d7da6023be22
18 sg:journal.1016285
19 schema:keywords Bland-Altman analysis
20 CT
21 CT studies
22 CT1
23 CT2
24 FDG PET/CT studies
25 PE
26 PE3
27 PET/CT studies
28 PurposeThe purpose
29 SUV normalization
30 account
31 agreement
32 analysis
33 bias
34 biases
35 body mass
36 comparison
37 determination
38 differences
39 different PEs
40 different predictive equations
41 direct determination
42 discrepancy
43 equations
44 estimates
45 greater positive bias
46 large discrepancies
47 lean body mass
48 limit
49 limits of agreement
50 magnitude
51 magnitude of bias
52 mass
53 measurement method
54 method
55 normalization
56 patients
57 percentage
58 percentage of difference
59 positive bias
60 predictive equations
61 purpose
62 range
63 range of biases
64 results
65 study
66 substantial discrepancies
67 wide limits
68 schema:name Direct Determination of Lean Body Mass by CT in F-18 FDG PET/CT Studies: Comparison with Estimates Using Predictive Equations
69 schema:pagination 98-103
70 schema:productId N31c6c31539354863aabf5b2289c9bfad
71 Nc3a2de7ed6724e21aac1972991889a7f
72 Ndeca287fd38a45888a3b35d3338c4e3f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035657275
74 https://doi.org/10.1007/s13139-013-0207-7
75 schema:sdDatePublished 2022-05-10T10:09
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N175c3b936e0d43d3b69bf7314b4213a8
78 schema:url https://doi.org/10.1007/s13139-013-0207-7
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N175c3b936e0d43d3b69bf7314b4213a8 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N1e278afe931249e1b8a284ead09619ba schema:issueNumber 2
85 rdf:type schema:PublicationIssue
86 N31c6c31539354863aabf5b2289c9bfad schema:name doi
87 schema:value 10.1007/s13139-013-0207-7
88 rdf:type schema:PropertyValue
89 N509a153a1ea34c058933e587fabd9618 rdf:first sg:person.0641764442.78
90 rdf:rest N97b8e72432614e38a4c69f265efce6f0
91 N6ef2320d8c8a40018b2fd69bf978feef rdf:first sg:person.010757656667.06
92 rdf:rest N509a153a1ea34c058933e587fabd9618
93 N745fad8877054a109c680beb9559e800 rdf:first sg:person.01155206462.91
94 rdf:rest N6ef2320d8c8a40018b2fd69bf978feef
95 N97b8e72432614e38a4c69f265efce6f0 rdf:first sg:person.01000020651.25
96 rdf:rest rdf:nil
97 Nab2e2506a43546ecbe08d7da6023be22 schema:volumeNumber 47
98 rdf:type schema:PublicationVolume
99 Nc3a2de7ed6724e21aac1972991889a7f schema:name pubmed_id
100 schema:value 24900089
101 rdf:type schema:PropertyValue
102 Ndeca287fd38a45888a3b35d3338c4e3f schema:name dimensions_id
103 schema:value pub.1035657275
104 rdf:type schema:PropertyValue
105 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
106 schema:name Medical and Health Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
109 schema:name Clinical Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1016285 schema:issn 1869-3474
112 1869-3482
113 schema:name Nuclear Medicine and Molecular Imaging
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01000020651.25 schema:affiliation grid-institutes:None
117 schema:familyName Kim
118 schema:givenName Dae-Weung
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000020651.25
120 rdf:type schema:Person
121 sg:person.010757656667.06 schema:affiliation grid-institutes:grid.410899.d
122 schema:familyName Kim
123 schema:givenName Woo Hyoung
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757656667.06
125 rdf:type schema:Person
126 sg:person.01155206462.91 schema:affiliation grid-institutes:None
127 schema:familyName Kim
128 schema:givenName Chang Guhn
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155206462.91
130 rdf:type schema:Person
131 sg:person.0641764442.78 schema:affiliation grid-institutes:grid.410899.d
132 schema:familyName Kim
133 schema:givenName Myoung Hyoun
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641764442.78
135 rdf:type schema:Person
136 sg:pub.10.1007/s00259-002-0974-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028673386
137 https://doi.org/10.1007/s00259-002-0974-3
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00592-003-0025-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853531
140 https://doi.org/10.1007/s00592-003-0025-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s13139-012-0146-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043302309
143 https://doi.org/10.1007/s13139-012-0146-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s13139-012-0175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037721026
146 https://doi.org/10.1007/s13139-012-0175-3
147 rdf:type schema:CreativeWork
148 sg:pub.10.2165/00003088-199426040-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017629041
149 https://doi.org/10.2165/00003088-199426040-00005
150 rdf:type schema:CreativeWork
151 sg:pub.10.2165/00003088-200039030-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030572913
152 https://doi.org/10.2165/00003088-200039030-00004
153 rdf:type schema:CreativeWork
154 grid-institutes:None schema:alternateName Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea
155 schema:name Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea
156 Institute of Wonkwang Medical Science, 344-2 Shinyong-Dong, 570-711, Iksan, Korea
157 rdf:type schema:Organization
158 grid-institutes:grid.410899.d schema:alternateName Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea
159 schema:name Department of Nuclear Medicine, Wonkwang University School of Medicine, 344-2 Shinyong-Dong, 570-711, Iksan, Korea
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...