Metabolic Tumor Volume Measured by F-18 FDG PET/CT can Further Stratify the Prognosis of Patients with Stage IV Non-Small Cell ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Su Woong Yoo, Jahae Kim, Ari Chong, Seong-Young Kwon, Jung-Joon Min, Ho-Chun Song, Hee-Seung Bom

ABSTRACT

PURPOSE: This study aimed to further stratify prognostic factors in patients with stage IV non-small cell lung cancer (NSCLC) by measuring their metabolic tumor volume (MTV) using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). MATERIALS AND METHODS: The subjects of this retrospective study were 57 patients with stage IV NSCLC. MTV, total lesion glycolysis (TLG), and maximum standardized uptake value (SUVmax) were measured on F-18 FDG PET/CT in both the primary lung lesion as well as metastatic lesions in torso. Optimal cutoff values of PET parameters were measured by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier survival curves were used for evaluation of progression-free survival (PFS). The univariate and multivariate Cox proportional hazards models were used to select the significant prognostic factors. RESULTS: Univariate analysis showed that both MTV and TLG of primary lung lesion (MTV-lung and TLG-lung) were significant factors for prediction of PFS (P < 0.001, P = 0.038, respectively). Patients showing lower values of MTV-lung and TLG-lung than the cutoff values had significantly longer mean PFS than those with higher values. Hazard ratios (95 % confidence interval) of MTV-lung and TLG-lung measured by univariate analysis were 6.4 (2.5-16.3) and 2.4 (1.0-5.5), respectively. Multivariate analysis revealed that MTV-lung was the only significant factor for prediction of prognosis. Hazard ratio was 13.5 (1.6-111.1, P = 0.016). CONCLUSION: Patients with stage IV NSCLC could be further stratified into subgroups of significantly better and worse prognosis by MTV of primary lung lesion. More... »

PAGES

286-293

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13139-012-0165-5

DOI

http://dx.doi.org/10.1007/s13139-012-0165-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004057562

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24900076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hwasun Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411602.0", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Su Woong", 
        "id": "sg:person.01025376231.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025376231.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jahae", 
        "id": "sg:person.01372301631.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372301631.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chong", 
        "givenName": "Ari", 
        "id": "sg:person.0611476366.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611476366.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hwasun Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411602.0", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Seong-Young", 
        "id": "sg:person.016437366371.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437366371.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hwasun Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411602.0", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Min", 
        "givenName": "Jung-Joon", 
        "id": "sg:person.012202121357.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202121357.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411597.f", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Ho-Chun", 
        "id": "sg:person.01340702204.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340702204.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University Hwasun Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411602.0", 
          "name": [
            "Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bom", 
        "givenName": "Hee-Seung", 
        "id": "sg:person.01357201565.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357201565.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2011.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2008.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1838-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001884653", 
          "https://doi.org/10.1007/s00259-011-1838-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009233958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1758-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013515892", 
          "https://doi.org/10.1007/s00259-011-1758-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e31811f4703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016850550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-2059-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017078415", 
          "https://doi.org/10.1007/s00259-011-2059-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.08-2968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017824983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2012.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018966603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-009-0719-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022874094", 
          "https://doi.org/10.1245/s10434-009-0719-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-009-0719-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022874094", 
          "https://doi.org/10.1245/s10434-009-0719-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-2153-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024196126", 
          "https://doi.org/10.1245/s10434-011-2153-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-010-0062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029216225", 
          "https://doi.org/10.1007/s13139-010-0062-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.07.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030178887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2008.10.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035298428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2011.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038711757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-011-1357-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044492024", 
          "https://doi.org/10.1007/s00277-011-1357-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.099531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044694185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.10.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045889106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841860903440270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047613448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-010-0063-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047786893", 
          "https://doi.org/10.1007/s13139-010-0063-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2008.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2008.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048634508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.123.1_suppl.226s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049270384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.123.1_suppl.226s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049270384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.305095166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050413199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2011.02164.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051408574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cllc.2011.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052732723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181d2dcd9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053215018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.100462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078385150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.100462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078385150"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "PURPOSE: This study aimed to further stratify prognostic factors in patients with stage IV non-small cell lung cancer (NSCLC) by measuring their metabolic tumor volume (MTV) using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT).\nMATERIALS AND METHODS: The subjects of this retrospective study were 57 patients with stage IV NSCLC. MTV, total lesion glycolysis (TLG), and maximum standardized uptake value (SUVmax) were measured on F-18 FDG PET/CT in both the primary lung lesion as well as metastatic lesions in torso. Optimal cutoff values of PET parameters were measured by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier survival curves were used for evaluation of progression-free survival (PFS). The univariate and multivariate Cox proportional hazards models were used to select the significant prognostic factors.\nRESULTS: Univariate analysis showed that both MTV and TLG of primary lung lesion (MTV-lung and TLG-lung) were significant factors for prediction of PFS (P\u2009<\u20090.001, P\u2009=\u20090.038, respectively). Patients showing lower values of MTV-lung and TLG-lung than the cutoff values had significantly longer mean PFS than those with higher values. Hazard ratios (95\u00a0% confidence interval) of MTV-lung and TLG-lung measured by univariate analysis were 6.4 (2.5-16.3) and 2.4 (1.0-5.5), respectively. Multivariate analysis revealed that MTV-lung was the only significant factor for prediction of prognosis. Hazard ratio was 13.5 (1.6-111.1, P\u2009=\u20090.016).\nCONCLUSION: Patients with stage IV NSCLC could be further stratified into subgroups of significantly better and worse prognosis by MTV of primary lung lesion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13139-012-0165-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016285", 
        "issn": [
          "1869-3474", 
          "1869-3482"
        ], 
        "name": "Nuclear Medicine and Molecular Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Metabolic Tumor Volume Measured by F-18 FDG PET/CT can Further Stratify the Prognosis of Patients with Stage IV Non-Small Cell Lung Cancer", 
    "pagination": "286-293", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13556272f7b7011c043d19a1eb79945e001a3b0ce2391b6c2101556f30a3c66c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24900076"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101530478"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13139-012-0165-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004057562"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13139-012-0165-5", 
      "https://app.dimensions.ai/details/publication/pub.1004057562"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13139-012-0165-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13139-012-0165-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13139-012-0165-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13139-012-0165-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13139-012-0165-5'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13139-012-0165-5 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nbe1c1771ec90428496f60b3d8200f445
4 schema:citation sg:pub.10.1007/s00259-011-1758-4
5 sg:pub.10.1007/s00259-011-1838-5
6 sg:pub.10.1007/s00259-011-2059-7
7 sg:pub.10.1007/s00277-011-1357-2
8 sg:pub.10.1007/s13139-010-0062-8
9 sg:pub.10.1007/s13139-010-0063-7
10 sg:pub.10.1245/s10434-009-0719-7
11 sg:pub.10.1245/s10434-011-2153-x
12 https://app.dimensions.ai/details/publication/pub.1076887958
13 https://doi.org/10.1016/j.acra.2011.08.020
14 https://doi.org/10.1016/j.cllc.2011.05.001
15 https://doi.org/10.1016/j.ijrobp.2005.07.967
16 https://doi.org/10.1016/j.ijrobp.2008.10.054
17 https://doi.org/10.1016/j.ijrobp.2008.10.060
18 https://doi.org/10.1016/j.ijrobp.2010.10.064
19 https://doi.org/10.1016/j.ijrobp.2011.10.023
20 https://doi.org/10.1016/j.radonc.2008.06.014
21 https://doi.org/10.1016/j.ygyno.2010.11.002
22 https://doi.org/10.1016/j.ygyno.2012.03.021
23 https://doi.org/10.1097/jto.0b013e31811f4703
24 https://doi.org/10.1097/jto.0b013e3181d2dcd9
25 https://doi.org/10.1111/j.1349-7006.2011.02164.x
26 https://doi.org/10.1148/rg.305095166
27 https://doi.org/10.1258/ar.2011.100462
28 https://doi.org/10.1378/chest.08-2968
29 https://doi.org/10.1378/chest.123.1_suppl.226s
30 https://doi.org/10.2967/jnumed.108.057307
31 https://doi.org/10.2967/jnumed.111.099531
32 https://doi.org/10.3109/02841860903440270
33 schema:datePublished 2012-12
34 schema:datePublishedReg 2012-12-01
35 schema:description PURPOSE: This study aimed to further stratify prognostic factors in patients with stage IV non-small cell lung cancer (NSCLC) by measuring their metabolic tumor volume (MTV) using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). MATERIALS AND METHODS: The subjects of this retrospective study were 57 patients with stage IV NSCLC. MTV, total lesion glycolysis (TLG), and maximum standardized uptake value (SUVmax) were measured on F-18 FDG PET/CT in both the primary lung lesion as well as metastatic lesions in torso. Optimal cutoff values of PET parameters were measured by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier survival curves were used for evaluation of progression-free survival (PFS). The univariate and multivariate Cox proportional hazards models were used to select the significant prognostic factors. RESULTS: Univariate analysis showed that both MTV and TLG of primary lung lesion (MTV-lung and TLG-lung) were significant factors for prediction of PFS (P < 0.001, P = 0.038, respectively). Patients showing lower values of MTV-lung and TLG-lung than the cutoff values had significantly longer mean PFS than those with higher values. Hazard ratios (95 % confidence interval) of MTV-lung and TLG-lung measured by univariate analysis were 6.4 (2.5-16.3) and 2.4 (1.0-5.5), respectively. Multivariate analysis revealed that MTV-lung was the only significant factor for prediction of prognosis. Hazard ratio was 13.5 (1.6-111.1, P = 0.016). CONCLUSION: Patients with stage IV NSCLC could be further stratified into subgroups of significantly better and worse prognosis by MTV of primary lung lesion.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nb7bde9fdcd02486d82fcdc9867c2448b
40 Nd7c9cd836a17430aae3640dacf874605
41 sg:journal.1016285
42 schema:name Metabolic Tumor Volume Measured by F-18 FDG PET/CT can Further Stratify the Prognosis of Patients with Stage IV Non-Small Cell Lung Cancer
43 schema:pagination 286-293
44 schema:productId N2dab9084550547e593f410c826ab8d29
45 N45f76f404a0c438eb2098bccc3f91948
46 Naeb29b1c159b46828341b18947e5dd72
47 Nd394351e4b4247169fa2cd46f165dc45
48 Nd3fdbe169d684dddb49bb8c51d8e52c5
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004057562
50 https://doi.org/10.1007/s13139-012-0165-5
51 schema:sdDatePublished 2019-04-10T14:11
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N4b2fab880243495c8dc71551b9532b0a
54 schema:url http://link.springer.com/10.1007%2Fs13139-012-0165-5
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N01df109f46634ff3a3c09d000e380520 rdf:first sg:person.016437366371.43
59 rdf:rest N24a0dbeff9c34bdd93033b73d4f54e81
60 N24a0dbeff9c34bdd93033b73d4f54e81 rdf:first sg:person.012202121357.56
61 rdf:rest N5c8c2c3f41984d8db779f383a70ba7d0
62 N2dab9084550547e593f410c826ab8d29 schema:name dimensions_id
63 schema:value pub.1004057562
64 rdf:type schema:PropertyValue
65 N45f76f404a0c438eb2098bccc3f91948 schema:name nlm_unique_id
66 schema:value 101530478
67 rdf:type schema:PropertyValue
68 N4b2fab880243495c8dc71551b9532b0a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N5c8c2c3f41984d8db779f383a70ba7d0 rdf:first sg:person.01340702204.27
71 rdf:rest Na5b0da115f444ab7a30173ed49036450
72 N69bc23c00c1c454884109c70704edbf0 rdf:first sg:person.01372301631.83
73 rdf:rest Nfc6d75d935144de280aacc24f9f4a3f0
74 Na5b0da115f444ab7a30173ed49036450 rdf:first sg:person.01357201565.70
75 rdf:rest rdf:nil
76 Naeb29b1c159b46828341b18947e5dd72 schema:name pubmed_id
77 schema:value 24900076
78 rdf:type schema:PropertyValue
79 Nb7bde9fdcd02486d82fcdc9867c2448b schema:volumeNumber 46
80 rdf:type schema:PublicationVolume
81 Nbe1c1771ec90428496f60b3d8200f445 rdf:first sg:person.01025376231.61
82 rdf:rest N69bc23c00c1c454884109c70704edbf0
83 Nd394351e4b4247169fa2cd46f165dc45 schema:name readcube_id
84 schema:value 13556272f7b7011c043d19a1eb79945e001a3b0ce2391b6c2101556f30a3c66c
85 rdf:type schema:PropertyValue
86 Nd3fdbe169d684dddb49bb8c51d8e52c5 schema:name doi
87 schema:value 10.1007/s13139-012-0165-5
88 rdf:type schema:PropertyValue
89 Nd7c9cd836a17430aae3640dacf874605 schema:issueNumber 4
90 rdf:type schema:PublicationIssue
91 Nfc6d75d935144de280aacc24f9f4a3f0 rdf:first sg:person.0611476366.35
92 rdf:rest N01df109f46634ff3a3c09d000e380520
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
97 schema:name Oncology and Carcinogenesis
98 rdf:type schema:DefinedTerm
99 sg:journal.1016285 schema:issn 1869-3474
100 1869-3482
101 schema:name Nuclear Medicine and Molecular Imaging
102 rdf:type schema:Periodical
103 sg:person.01025376231.61 schema:affiliation https://www.grid.ac/institutes/grid.411602.0
104 schema:familyName Yoo
105 schema:givenName Su Woong
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025376231.61
107 rdf:type schema:Person
108 sg:person.012202121357.56 schema:affiliation https://www.grid.ac/institutes/grid.411602.0
109 schema:familyName Min
110 schema:givenName Jung-Joon
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202121357.56
112 rdf:type schema:Person
113 sg:person.01340702204.27 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
114 schema:familyName Song
115 schema:givenName Ho-Chun
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340702204.27
117 rdf:type schema:Person
118 sg:person.01357201565.70 schema:affiliation https://www.grid.ac/institutes/grid.411602.0
119 schema:familyName Bom
120 schema:givenName Hee-Seung
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357201565.70
122 rdf:type schema:Person
123 sg:person.01372301631.83 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
124 schema:familyName Kim
125 schema:givenName Jahae
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372301631.83
127 rdf:type schema:Person
128 sg:person.016437366371.43 schema:affiliation https://www.grid.ac/institutes/grid.411602.0
129 schema:familyName Kwon
130 schema:givenName Seong-Young
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016437366371.43
132 rdf:type schema:Person
133 sg:person.0611476366.35 schema:affiliation https://www.grid.ac/institutes/grid.411597.f
134 schema:familyName Chong
135 schema:givenName Ari
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611476366.35
137 rdf:type schema:Person
138 sg:pub.10.1007/s00259-011-1758-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013515892
139 https://doi.org/10.1007/s00259-011-1758-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00259-011-1838-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001884653
142 https://doi.org/10.1007/s00259-011-1838-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00259-011-2059-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017078415
145 https://doi.org/10.1007/s00259-011-2059-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00277-011-1357-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044492024
148 https://doi.org/10.1007/s00277-011-1357-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s13139-010-0062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029216225
151 https://doi.org/10.1007/s13139-010-0062-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s13139-010-0063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047786893
154 https://doi.org/10.1007/s13139-010-0063-7
155 rdf:type schema:CreativeWork
156 sg:pub.10.1245/s10434-009-0719-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022874094
157 https://doi.org/10.1245/s10434-009-0719-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1245/s10434-011-2153-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024196126
160 https://doi.org/10.1245/s10434-011-2153-x
161 rdf:type schema:CreativeWork
162 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
163 https://doi.org/10.1016/j.acra.2011.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038711757
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.cllc.2011.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052732723
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijrobp.2005.07.967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030178887
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijrobp.2008.10.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035298428
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijrobp.2008.10.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048297290
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijrobp.2010.10.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045889106
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijrobp.2011.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092110
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.radonc.2008.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285486
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ygyno.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048634508
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ygyno.2012.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018966603
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1097/jto.0b013e31811f4703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016850550
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1097/jto.0b013e3181d2dcd9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053215018
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1349-7006.2011.02164.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051408574
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/rg.305095166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050413199
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1258/ar.2011.100462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078385150
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1378/chest.08-2968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017824983
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1378/chest.123.1_suppl.226s schema:sameAs https://app.dimensions.ai/details/publication/pub.1049270384
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2967/jnumed.111.099531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044694185
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3109/02841860903440270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047613448
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.411597.f schema:alternateName Chonnam National University Hospital
204 schema:name Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.411602.0 schema:alternateName Chonnam National University Hwasun Hospital
207 schema:name Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-do, South Korea
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...