Fast and robust flow simulations in discrete fracture networks with GPGPUs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

S. Berrone, A. D’Auria, F. Vicini

ABSTRACT

A new approach for flow simulation in very complex discrete fracture networks based on PDE-constrained optimization has been recently proposed in Berrone et al. (SIAM J Sci Comput 35(2):B487–B510, 2013b; J Comput Phys 256:838–853, 2014) with the aim of improving robustness with respect to geometrical complexities. This is an essential issue, in particular for applications requiring simulations on geometries automatically generated like the ones used for uncertainty quantification analyses and hydro-mechanical simulations. In this paper, implementation of this approach in order to exploit Nvidia Compute Unified Device Architecture is discussed with the main focus to speed up the linear algebra operations required by the approach, being this task the most computational demanding part of the approach. Furthermore, two different approaches for linear algebra operations and two storage formats for sparse matrices are compared in terms of computational efficiency and memory constraints. More... »

PAGES

8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13137-019-0121-y

DOI

http://dx.doi.org/10.1007/s13137-019-0121-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111564684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berrone", 
        "givenName": "S.", 
        "id": "sg:person.010436022305.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010436022305.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Auria", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicini", 
        "givenName": "F.", 
        "id": "sg:person.016411626305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411626305.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cma.2014.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001154153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995423912020103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005867575", 
          "https://doi.org/10.1134/s1995423912020103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2016.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006429796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05789-7_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008958574", 
          "https://doi.org/10.1007/978-3-319-05789-7_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2010.495333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016470015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr026i003p00479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021274418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2006.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022398859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023154676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023484430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-015-9554-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027700372", 
          "https://doi.org/10.1007/s10596-015-9554-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029448491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030285872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2012.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034032605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001wr900010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034845610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038339581", 
          "https://doi.org/10.1007/bf01019674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2014.11.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042439044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(03)00140-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042831504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(03)00140-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042831504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0014497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043773581", 
          "https://doi.org/10.1007/bfb0014497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0014497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043773581", 
          "https://doi.org/10.1007/bfb0014497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-016-9606-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044465946", 
          "https://doi.org/10.1007/s10596-016-9606-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-016-9606-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044465946", 
          "https://doi.org/10.1007/s10596-016-9606-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2011.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050538172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(01)00047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051575612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052583458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2015087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057032679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2016033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057032721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drw044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059690033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060653482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100804383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120865884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120882883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130942541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140953691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140984014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1014760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202512500492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2516/ogst/2013192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070868794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2017.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-017-9644-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084757967", 
          "https://doi.org/10.1007/s10596-017-9644-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-017-9644-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084757967", 
          "https://doi.org/10.1007/s10596-017-9644-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085860129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2017.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086041691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086046779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.07.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090910604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090916674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090916674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090916674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090916674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091421906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-017-9686-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092056911", 
          "https://doi.org/10.1007/s10596-017-9686-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2017.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092477568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2016.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094637261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/163605-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096982178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1098231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100781531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017wr021163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100834010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/17m1119500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103363112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2018.09.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107499243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "A new approach for flow simulation in very complex discrete fracture networks based on PDE-constrained optimization has been recently proposed in Berrone et al. (SIAM J Sci Comput 35(2):B487\u2013B510, 2013b; J Comput Phys 256:838\u2013853, 2014) with the aim of improving robustness with respect to geometrical complexities. This is an essential issue, in particular for applications requiring simulations on geometries automatically generated like the ones used for uncertainty quantification analyses and hydro-mechanical simulations. In this paper, implementation of this approach in order to exploit Nvidia Compute Unified Device Architecture is discussed with the main focus to speed up the linear algebra operations required by the approach, being this task the most computational demanding part of the approach. Furthermore, two different approaches for linear algebra operations and two storage formats for sparse matrices are compared in terms of computational efficiency and memory constraints.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13137-019-0121-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136832", 
        "issn": [
          "1869-2672", 
          "1869-2680"
        ], 
        "name": "GEM - International Journal on Geomathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Fast and robust flow simulations in discrete fracture networks with GPGPUs", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2609fd40596793db775eaf20f0896498824c59a24cbe2c2de307a0b8697cfaf0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13137-019-0121-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111564684"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13137-019-0121-y", 
      "https://app.dimensions.ai/details/publication/pub.1111564684"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65022_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13137-019-0121-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13137-019-0121-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13137-019-0121-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13137-019-0121-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13137-019-0121-y'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13137-019-0121-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N43132940985842c18ec98d9eed32113d
4 schema:citation sg:pub.10.1007/978-3-319-05789-7_8
5 sg:pub.10.1007/bf01019674
6 sg:pub.10.1007/bfb0014497
7 sg:pub.10.1007/s10596-015-9554-z
8 sg:pub.10.1007/s10596-016-9606-z
9 sg:pub.10.1007/s10596-017-9644-1
10 sg:pub.10.1007/s10596-017-9686-4
11 sg:pub.10.1134/s1995423912020103
12 https://doi.org/10.1002/2017wr021163
13 https://doi.org/10.1002/nag.596
14 https://doi.org/10.1016/j.advwatres.2017.10.036
15 https://doi.org/10.1016/j.apnum.2006.02.005
16 https://doi.org/10.1016/j.cageo.2012.07.025
17 https://doi.org/10.1016/j.cageo.2017.06.012
18 https://doi.org/10.1016/j.cma.2014.07.016
19 https://doi.org/10.1016/j.cma.2016.12.006
20 https://doi.org/10.1016/j.finel.2017.01.006
21 https://doi.org/10.1016/j.finel.2017.05.011
22 https://doi.org/10.1016/j.jcp.2011.08.015
23 https://doi.org/10.1016/j.jcp.2013.09.028
24 https://doi.org/10.1016/j.jcp.2014.11.038
25 https://doi.org/10.1016/j.jcp.2015.11.034
26 https://doi.org/10.1016/j.jcp.2016.01.009
27 https://doi.org/10.1016/j.jcp.2017.05.049
28 https://doi.org/10.1016/j.jcp.2017.07.041
29 https://doi.org/10.1016/j.jcp.2018.09.048
30 https://doi.org/10.1016/j.jhydrol.2017.07.046
31 https://doi.org/10.1016/j.jhydrol.2017.08.052
32 https://doi.org/10.1016/s0098-3004(03)00140-7
33 https://doi.org/10.1016/s0925-7721(01)00047-5
34 https://doi.org/10.1029/1999wr900118
35 https://doi.org/10.1029/2001wr900010
36 https://doi.org/10.1029/wr026i003p00479
37 https://doi.org/10.1051/m2an/2015087
38 https://doi.org/10.1051/m2an/2016033
39 https://doi.org/10.1080/00036811.2010.495333
40 https://doi.org/10.1093/imanum/drw044
41 https://doi.org/10.1109/sc.2016.57
42 https://doi.org/10.1137/060653482
43 https://doi.org/10.1137/100804383
44 https://doi.org/10.1137/120865884
45 https://doi.org/10.1137/120882883
46 https://doi.org/10.1137/130942541
47 https://doi.org/10.1137/140953691
48 https://doi.org/10.1137/140984014
49 https://doi.org/10.1137/15m1014760
50 https://doi.org/10.1137/16m1098231
51 https://doi.org/10.1137/17m1119500
52 https://doi.org/10.1142/s0218202512500492
53 https://doi.org/10.2118/163605-ms
54 https://doi.org/10.2516/ogst/2013192
55 schema:datePublished 2019-12
56 schema:datePublishedReg 2019-12-01
57 schema:description A new approach for flow simulation in very complex discrete fracture networks based on PDE-constrained optimization has been recently proposed in Berrone et al. (SIAM J Sci Comput 35(2):B487–B510, 2013b; J Comput Phys 256:838–853, 2014) with the aim of improving robustness with respect to geometrical complexities. This is an essential issue, in particular for applications requiring simulations on geometries automatically generated like the ones used for uncertainty quantification analyses and hydro-mechanical simulations. In this paper, implementation of this approach in order to exploit Nvidia Compute Unified Device Architecture is discussed with the main focus to speed up the linear algebra operations required by the approach, being this task the most computational demanding part of the approach. Furthermore, two different approaches for linear algebra operations and two storage formats for sparse matrices are compared in terms of computational efficiency and memory constraints.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N1843855e60df4a488ec1a3c8f5108306
62 Ne0f4896978374f29ae41951f4f15ea7c
63 sg:journal.1136832
64 schema:name Fast and robust flow simulations in discrete fracture networks with GPGPUs
65 schema:pagination 8
66 schema:productId N61660b2b09fb4291bc4cf02188c4ea1e
67 Nb220b569824349de90580270328e4a0a
68 Nf4ee36c8bd034b8fa39d1dee2adf6d8c
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111564684
70 https://doi.org/10.1007/s13137-019-0121-y
71 schema:sdDatePublished 2019-04-11T08:43
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nbba5c863ae7748b984ef406e2827e87b
74 schema:url https://link.springer.com/10.1007%2Fs13137-019-0121-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N03fe65cf08b446fbaf05e2eddd7d0865 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
79 schema:familyName D’Auria
80 schema:givenName A.
81 rdf:type schema:Person
82 N1843855e60df4a488ec1a3c8f5108306 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N43132940985842c18ec98d9eed32113d rdf:first sg:person.010436022305.90
85 rdf:rest Nc690227cf57346918bb891d309dd90e6
86 N61660b2b09fb4291bc4cf02188c4ea1e schema:name readcube_id
87 schema:value 2609fd40596793db775eaf20f0896498824c59a24cbe2c2de307a0b8697cfaf0
88 rdf:type schema:PropertyValue
89 N6787a23412e2409cb3c63142705f222d rdf:first sg:person.016411626305.75
90 rdf:rest rdf:nil
91 Nb220b569824349de90580270328e4a0a schema:name dimensions_id
92 schema:value pub.1111564684
93 rdf:type schema:PropertyValue
94 Nbba5c863ae7748b984ef406e2827e87b schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nc690227cf57346918bb891d309dd90e6 rdf:first N03fe65cf08b446fbaf05e2eddd7d0865
97 rdf:rest N6787a23412e2409cb3c63142705f222d
98 Ne0f4896978374f29ae41951f4f15ea7c schema:volumeNumber 10
99 rdf:type schema:PublicationVolume
100 Nf4ee36c8bd034b8fa39d1dee2adf6d8c schema:name doi
101 schema:value 10.1007/s13137-019-0121-y
102 rdf:type schema:PropertyValue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:journal.1136832 schema:issn 1869-2672
110 1869-2680
111 schema:name GEM - International Journal on Geomathematics
112 rdf:type schema:Periodical
113 sg:person.010436022305.90 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
114 schema:familyName Berrone
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010436022305.90
117 rdf:type schema:Person
118 sg:person.016411626305.75 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
119 schema:familyName Vicini
120 schema:givenName F.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411626305.75
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-319-05789-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008958574
124 https://doi.org/10.1007/978-3-319-05789-7_8
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01019674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038339581
127 https://doi.org/10.1007/bf01019674
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bfb0014497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043773581
130 https://doi.org/10.1007/bfb0014497
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10596-015-9554-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027700372
133 https://doi.org/10.1007/s10596-015-9554-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10596-016-9606-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044465946
136 https://doi.org/10.1007/s10596-016-9606-z
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10596-017-9644-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084757967
139 https://doi.org/10.1007/s10596-017-9644-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10596-017-9686-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092056911
142 https://doi.org/10.1007/s10596-017-9686-4
143 rdf:type schema:CreativeWork
144 sg:pub.10.1134/s1995423912020103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005867575
145 https://doi.org/10.1134/s1995423912020103
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/2017wr021163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100834010
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/nag.596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030285872
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.advwatres.2017.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092477568
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.apnum.2006.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022398859
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cageo.2012.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034032605
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.cageo.2017.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086041691
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cma.2014.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001154153
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cma.2016.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006429796
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.finel.2017.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083828451
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.finel.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086046779
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jcp.2011.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050538172
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jcp.2013.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052583458
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jcp.2014.11.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042439044
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jcp.2015.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023484430
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jcp.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023154676
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jcp.2017.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085860129
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jcp.2017.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090910604
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jcp.2018.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107499243
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jhydrol.2017.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090916674
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jhydrol.2017.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091421906
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0098-3004(03)00140-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042831504
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0925-7721(01)00047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051575612
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/1999wr900118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029448491
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/2001wr900010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034845610
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1029/wr026i003p00479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021274418
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1051/m2an/2015087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057032679
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1051/m2an/2016033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057032721
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/00036811.2010.495333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016470015
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/imanum/drw044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690033
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/sc.2016.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094637261
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1137/060653482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849146
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1137/100804383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859226
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1137/120865884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869100
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1137/120882883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869629
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1137/130942541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871438
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1137/140953691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871798
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1137/140984014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872715
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1137/15m1014760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873521
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1137/16m1098231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100781531
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1137/17m1119500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103363112
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1142/s0218202512500492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963421
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2118/163605-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096982178
230 rdf:type schema:CreativeWork
231 https://doi.org/10.2516/ogst/2013192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070868794
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
234 schema:name Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...