Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Habiba Arshad, Muhammad Attique Khan, Muhammad Sharif, Mussarat Yasmin, Muhammad Younus Javed

ABSTRACT

A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods. More... »

PAGES

1-18

References to SciGraph publications

  • 2018-10-10. Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2018. Gait Recognition Using Motion Trajectory Analysis in PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS CORES 2017
  • 2018-01-27. An implementation of optimized framework for action classification using multilayers neural network on selected fused features in PATTERN ANALYSIS AND APPLICATIONS
  • 2018-09-24. Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features in JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING
  • 2007. Walker Recognition Without Gait Cycle Estimation in ADVANCES IN BIOMETRICS
  • 2018-05. A view-invariant gait recognition algorithm based on a joint-direct linear discriminant analysis in APPLIED INTELLIGENCE
  • 2007. Uniprojective Features for Gait Recognition in ADVANCES IN BIOMETRICS
  • 2015-11. Entropy volumes for viewpoint-independent gait recognition in MACHINE VISION AND APPLICATIONS
  • 2014. The AVA Multi-View Dataset for Gait Recognition in ACTIVITY MONITORING BY MULTIPLE DISTRIBUTED SENSING
  • 2009. Gait Recognition Using Hough Transform and Principal Component Analysis in EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS
  • 2017-02. Gait recognition from corrupted silhouettes: a robust statistical approach in MACHINE VISION AND APPLICATIONS
  • 2017-10-20. Pose-Based Temporal-Spatial Network (PTSN) for Gait Recognition with Carrying and Clothing Variations in BIOMETRIC RECOGNITION
  • 2017-09. Reducing covariate factors of gait recognition using feature selection and dictionary-based sparse coding in SIGNAL, IMAGE AND VIDEO PROCESSING
  • 2015. Improved Human Gait Recognition in IMAGE ANALYSIS AND PROCESSING — ICIAP 2015
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0

    DOI

    http://dx.doi.org/10.1007/s13042-019-00947-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112855220


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Quaid-i-Azam University", 
              "id": "https://www.grid.ac/institutes/grid.412621.2", 
              "name": [
                "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arshad", 
            "givenName": "Habiba", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HITEC University", 
              "id": "https://www.grid.ac/institutes/grid.448709.6", 
              "name": [
                "Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khan", 
            "givenName": "Muhammad Attique", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Quaid-i-Azam University", 
              "id": "https://www.grid.ac/institutes/grid.412621.2", 
              "name": [
                "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharif", 
            "givenName": "Muhammad", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Quaid-i-Azam University", 
              "id": "https://www.grid.ac/institutes/grid.412621.2", 
              "name": [
                "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yasmin", 
            "givenName": "Mussarat", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HITEC University", 
              "id": "https://www.grid.ac/institutes/grid.448709.6", 
              "name": [
                "Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Javed", 
            "givenName": "Muhammad Younus", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00138-016-0798-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001963150", 
              "https://doi.org/10.1007/s00138-016-0798-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-016-0798-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001963150", 
              "https://doi.org/10.1007/s00138-016-0798-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2015.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005500510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optcom.2011.02.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006919883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2016.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009061666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.851296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018571938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02533839.2016.1230028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019338295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvcir.2016.03.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023988776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-13323-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028164332", 
              "https://doi.org/10.1007/978-3-319-13323-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-015-0707-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032619878", 
              "https://doi.org/10.1007/s00138-015-0707-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(95)00067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035783933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2015.10.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037061405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74549-5_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039115916", 
              "https://doi.org/10.1007/978-3-540-74549-5_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74549-5_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039115916", 
              "https://doi.org/10.1007/978-3-540-74549-5_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-23234-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039763229", 
              "https://doi.org/10.1007/978-3-319-23234-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2016.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043951876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2015.05.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044473967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2010.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048798647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ima.20136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051133597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74549-5_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051233370", 
              "https://doi.org/10.1007/978-3-540-74549-5_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74549-5_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051233370", 
              "https://doi.org/10.1007/978-3-540-74549-5_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04070-2_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052312691", 
              "https://doi.org/10.1007/978-3-642-04070-2_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-cvi.2016.0280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056825543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2003.1251144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2012.2197823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061797491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2017.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083758066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2017.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083760197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2017.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083879653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-017-1067-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083893847", 
              "https://doi.org/10.1007/s11760-017-1067-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11760-017-1067-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083893847", 
              "https://doi.org/10.1007/s11760-017-1067-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-59162-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085207314", 
              "https://doi.org/10.1007/978-3-319-59162-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/thms.2017.2706658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085849578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2017.2705799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085871610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1992.223269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086299893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-017-1043-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091210305", 
              "https://doi.org/10.1007/s10489-017-1043-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-017-1043-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091210305", 
              "https://doi.org/10.1007/s10489-017-1043-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-ipr.2017.0368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091273047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69923-3_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092276216", 
              "https://doi.org/10.1007/978-3-319-69923-3_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69923-3_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092276216", 
              "https://doi.org/10.1007/978-3-319-69923-3_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ecs.2014.6892588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093302762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2014.298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093727613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cisp.2009.5304656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093825560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icoict.2017.8074680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093876663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/avss.2011.6027286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094365018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ems.2016.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094577721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/spin.2014.6776930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094637866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2006.478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095519291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2007.4378960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095667163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-018-0688-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100679221", 
              "https://doi.org/10.1007/s10044-018-0688-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2018.01.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100826865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2018.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100915599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icoras.2017.8308067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101396248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101400046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101400046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101400046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2018.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104250799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219519418500380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104999536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-1051-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107207634", 
              "https://doi.org/10.1007/s12652-018-1051-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijapr.2018.094815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107238943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12652-018-1075-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107530279", 
              "https://doi.org/10.1007/s12652-018-1075-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2018.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107741455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18103583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107793668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0952813x.2019.1572657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111835752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1574893614666190304125221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112555243"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-18", 
        "datePublishedReg": "2019-03-18", 
        "description": "A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13042-019-00947-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136696", 
            "issn": [
              "1868-8071", 
              "1868-808X"
            ], 
            "name": "International Journal of Machine Learning and Cybernetics", 
            "type": "Periodical"
          }
        ], 
        "name": "Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution", 
        "pagination": "1-18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "973fcacbb755742905ef0dfc3d2084b2ee654ac1ca8a12391ca79df662198eb1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13042-019-00947-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112855220"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13042-019-00947-0", 
          "https://app.dimensions.ai/details/publication/pub.1112855220"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53990_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13042-019-00947-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      21 PREDICATES      80 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13042-019-00947-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5f368c1ba16a4fefa7cb1043042d02e8
    4 schema:citation sg:pub.10.1007/978-3-319-13323-2_3
    5 sg:pub.10.1007/978-3-319-23234-8_12
    6 sg:pub.10.1007/978-3-319-59162-9_8
    7 sg:pub.10.1007/978-3-319-69923-3_51
    8 sg:pub.10.1007/978-3-540-74549-5_24
    9 sg:pub.10.1007/978-3-540-74549-5_71
    10 sg:pub.10.1007/978-3-642-04070-2_41
    11 sg:pub.10.1007/s00138-015-0707-9
    12 sg:pub.10.1007/s00138-016-0798-y
    13 sg:pub.10.1007/s10044-018-0688-1
    14 sg:pub.10.1007/s10489-017-1043-8
    15 sg:pub.10.1007/s11760-017-1067-x
    16 sg:pub.10.1007/s12652-018-1051-5
    17 sg:pub.10.1007/s12652-018-1075-x
    18 https://doi.org/10.1002/ima.20136
    19 https://doi.org/10.1016/0031-3203(95)00067-4
    20 https://doi.org/10.1016/j.compag.2018.10.013
    21 https://doi.org/10.1016/j.eswa.2018.02.016
    22 https://doi.org/10.1016/j.future.2018.05.002
    23 https://doi.org/10.1016/j.imavis.2016.01.003
    24 https://doi.org/10.1016/j.imavis.2017.02.004
    25 https://doi.org/10.1016/j.jvcir.2016.03.020
    26 https://doi.org/10.1016/j.neucom.2015.10.065
    27 https://doi.org/10.1016/j.neucom.2017.02.006
    28 https://doi.org/10.1016/j.neunet.2018.02.017
    29 https://doi.org/10.1016/j.optcom.2011.02.066
    30 https://doi.org/10.1016/j.patcog.2017.02.014
    31 https://doi.org/10.1016/j.patrec.2015.05.016
    32 https://doi.org/10.1016/j.patrec.2015.08.025
    33 https://doi.org/10.1016/j.patrec.2016.05.009
    34 https://doi.org/10.1016/j.patrec.2018.01.021
    35 https://doi.org/10.1016/j.sigpro.2010.01.024
    36 https://doi.org/10.1049/iet-cvi.2016.0280
    37 https://doi.org/10.1049/iet-ipr.2017.0368
    38 https://doi.org/10.1080/02533839.2016.1230028
    39 https://doi.org/10.1080/0952813x.2019.1572657
    40 https://doi.org/10.1109/avss.2011.6027286
    41 https://doi.org/10.1109/cisp.2009.5304656
    42 https://doi.org/10.1109/cvpr.1992.223269
    43 https://doi.org/10.1109/ecs.2014.6892588
    44 https://doi.org/10.1109/ems.2016.016
    45 https://doi.org/10.1109/icip.2007.4378960
    46 https://doi.org/10.1109/icoict.2017.8074680
    47 https://doi.org/10.1109/icoras.2017.8308067
    48 https://doi.org/10.1109/icpr.2006.478
    49 https://doi.org/10.1109/icpr.2014.298
    50 https://doi.org/10.1109/spin.2014.6776930
    51 https://doi.org/10.1109/tcyb.2017.2705799
    52 https://doi.org/10.1109/thms.2017.2706658
    53 https://doi.org/10.1109/tpami.2003.1251144
    54 https://doi.org/10.1109/tsmcb.2012.2197823
    55 https://doi.org/10.1117/12.851296
    56 https://doi.org/10.1142/s0219519418500380
    57 https://doi.org/10.1504/ijapr.2018.094815
    58 https://doi.org/10.2174/1574893614666190304125221
    59 https://doi.org/10.3390/s18103583
    60 schema:datePublished 2019-03-18
    61 schema:datePublishedReg 2019-03-18
    62 schema:description A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods.
    63 schema:genre research_article
    64 schema:inLanguage en
    65 schema:isAccessibleForFree false
    66 schema:isPartOf sg:journal.1136696
    67 schema:name Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
    68 schema:pagination 1-18
    69 schema:productId N94afb0e4dd40497282a2d4e5e5f012b5
    70 Ne5606f3a76004ca4b6b629a836622633
    71 Nffb74b42e46f495cac5192b0fe7b5a7e
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855220
    73 https://doi.org/10.1007/s13042-019-00947-0
    74 schema:sdDatePublished 2019-04-11T12:12
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N1cbfeb7c05ae46c18ff953c6c706e231
    77 schema:url https://link.springer.com/10.1007%2Fs13042-019-00947-0
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N16233b59b9594dd89a2d932ded6df54c schema:affiliation https://www.grid.ac/institutes/grid.412621.2
    82 schema:familyName Yasmin
    83 schema:givenName Mussarat
    84 rdf:type schema:Person
    85 N1cbfeb7c05ae46c18ff953c6c706e231 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N3470bcd0cbb34d0b8dc9c1c9798976d7 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
    88 schema:familyName Arshad
    89 schema:givenName Habiba
    90 rdf:type schema:Person
    91 N3799987194bf41a3ab56831a856e21f0 schema:affiliation https://www.grid.ac/institutes/grid.448709.6
    92 schema:familyName Javed
    93 schema:givenName Muhammad Younus
    94 rdf:type schema:Person
    95 N4e7093cfddd54ad59c984d6776f60875 rdf:first Nf841c27a31cf42268f80cf7c7cc230d8
    96 rdf:rest Nb01a77ed65d54de081f7a88dda686d44
    97 N5f368c1ba16a4fefa7cb1043042d02e8 rdf:first N3470bcd0cbb34d0b8dc9c1c9798976d7
    98 rdf:rest Nb64bd42f7a2b403c94a2221571ae291b
    99 N94afb0e4dd40497282a2d4e5e5f012b5 schema:name dimensions_id
    100 schema:value pub.1112855220
    101 rdf:type schema:PropertyValue
    102 Nb01a77ed65d54de081f7a88dda686d44 rdf:first N16233b59b9594dd89a2d932ded6df54c
    103 rdf:rest Ndc746e965d464b6893ab228f05877962
    104 Nb449d1aa3bbd4f7580e88124d8e1c799 schema:affiliation https://www.grid.ac/institutes/grid.448709.6
    105 schema:familyName Khan
    106 schema:givenName Muhammad Attique
    107 rdf:type schema:Person
    108 Nb64bd42f7a2b403c94a2221571ae291b rdf:first Nb449d1aa3bbd4f7580e88124d8e1c799
    109 rdf:rest N4e7093cfddd54ad59c984d6776f60875
    110 Ndc746e965d464b6893ab228f05877962 rdf:first N3799987194bf41a3ab56831a856e21f0
    111 rdf:rest rdf:nil
    112 Ne5606f3a76004ca4b6b629a836622633 schema:name doi
    113 schema:value 10.1007/s13042-019-00947-0
    114 rdf:type schema:PropertyValue
    115 Nf841c27a31cf42268f80cf7c7cc230d8 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
    116 schema:familyName Sharif
    117 schema:givenName Muhammad
    118 rdf:type schema:Person
    119 Nffb74b42e46f495cac5192b0fe7b5a7e schema:name readcube_id
    120 schema:value 973fcacbb755742905ef0dfc3d2084b2ee654ac1ca8a12391ca79df662198eb1
    121 rdf:type schema:PropertyValue
    122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Information and Computing Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Artificial Intelligence and Image Processing
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1136696 schema:issn 1868-8071
    129 1868-808X
    130 schema:name International Journal of Machine Learning and Cybernetics
    131 rdf:type schema:Periodical
    132 sg:pub.10.1007/978-3-319-13323-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028164332
    133 https://doi.org/10.1007/978-3-319-13323-2_3
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-319-23234-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039763229
    136 https://doi.org/10.1007/978-3-319-23234-8_12
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-319-59162-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207314
    139 https://doi.org/10.1007/978-3-319-59162-9_8
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-319-69923-3_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092276216
    142 https://doi.org/10.1007/978-3-319-69923-3_51
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-540-74549-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039115916
    145 https://doi.org/10.1007/978-3-540-74549-5_24
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-540-74549-5_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051233370
    148 https://doi.org/10.1007/978-3-540-74549-5_71
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-642-04070-2_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052312691
    151 https://doi.org/10.1007/978-3-642-04070-2_41
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00138-015-0707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032619878
    154 https://doi.org/10.1007/s00138-015-0707-9
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00138-016-0798-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963150
    157 https://doi.org/10.1007/s00138-016-0798-y
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10044-018-0688-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100679221
    160 https://doi.org/10.1007/s10044-018-0688-1
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10489-017-1043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091210305
    163 https://doi.org/10.1007/s10489-017-1043-8
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11760-017-1067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083893847
    166 https://doi.org/10.1007/s11760-017-1067-x
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s12652-018-1051-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107207634
    169 https://doi.org/10.1007/s12652-018-1051-5
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s12652-018-1075-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107530279
    172 https://doi.org/10.1007/s12652-018-1075-x
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1002/ima.20136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133597
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/0031-3203(95)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783933
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.compag.2018.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107741455
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.eswa.2018.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100915599
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.future.2018.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104250799
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.imavis.2016.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009061666
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.imavis.2017.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083879653
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.jvcir.2016.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023988776
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.neucom.2015.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037061405
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.neucom.2017.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083758066
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.neunet.2018.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101400046
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.optcom.2011.02.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006919883
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.patcog.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083760197
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.patrec.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473967
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.patrec.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005500510
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.patrec.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043951876
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.patrec.2018.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100826865
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.sigpro.2010.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048798647
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1049/iet-cvi.2016.0280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825543
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1049/iet-ipr.2017.0368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091273047
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1080/02533839.2016.1230028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338295
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1080/0952813x.2019.1572657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111835752
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1109/avss.2011.6027286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094365018
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/cisp.2009.5304656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093825560
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/cvpr.1992.223269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086299893
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/ecs.2014.6892588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093302762
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/ems.2016.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094577721
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/icip.2007.4378960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095667163
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/icoict.2017.8074680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093876663
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/icoras.2017.8308067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101396248
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/icpr.2006.478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095519291
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/icpr.2014.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093727613
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/spin.2014.6776930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094637866
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/tcyb.2017.2705799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085871610
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/thms.2017.2706658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085849578
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/tpami.2003.1251144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742601
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/tsmcb.2012.2197823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797491
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1117/12.851296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018571938
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1142/s0219519418500380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104999536
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1504/ijapr.2018.094815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107238943
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.2174/1574893614666190304125221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112555243
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.3390/s18103583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107793668
    257 rdf:type schema:CreativeWork
    258 https://www.grid.ac/institutes/grid.412621.2 schema:alternateName Quaid-i-Azam University
    259 schema:name Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan
    260 rdf:type schema:Organization
    261 https://www.grid.ac/institutes/grid.448709.6 schema:alternateName HITEC University
    262 schema:name Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...