Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Habiba Arshad, Muhammad Attique Khan, Muhammad Sharif, Mussarat Yasmin, Muhammad Younus Javed

ABSTRACT

A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0

DOI

http://dx.doi.org/10.1007/s13042-019-00947-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112855220


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arshad", 
        "givenName": "Habiba", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HITEC University", 
          "id": "https://www.grid.ac/institutes/grid.448709.6", 
          "name": [
            "Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Muhammad Attique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharif", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasmin", 
        "givenName": "Mussarat", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HITEC University", 
          "id": "https://www.grid.ac/institutes/grid.448709.6", 
          "name": [
            "Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javed", 
        "givenName": "Muhammad Younus", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00138-016-0798-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001963150", 
          "https://doi.org/10.1007/s00138-016-0798-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-016-0798-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001963150", 
          "https://doi.org/10.1007/s00138-016-0798-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005500510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2011.02.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006919883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2016.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009061666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.851296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018571938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02533839.2016.1230028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019338295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2016.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023988776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13323-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028164332", 
          "https://doi.org/10.1007/978-3-319-13323-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-015-0707-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032619878", 
          "https://doi.org/10.1007/s00138-015-0707-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(95)00067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035783933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037061405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74549-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039115916", 
          "https://doi.org/10.1007/978-3-540-74549-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74549-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039115916", 
          "https://doi.org/10.1007/978-3-540-74549-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-23234-8_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039763229", 
          "https://doi.org/10.1007/978-3-319-23234-8_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2016.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043951876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2015.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044473967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2010.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048798647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ima.20136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051133597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74549-5_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051233370", 
          "https://doi.org/10.1007/978-3-540-74549-5_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74549-5_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051233370", 
          "https://doi.org/10.1007/978-3-540-74549-5_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04070-2_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052312691", 
          "https://doi.org/10.1007/978-3-642-04070-2_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cvi.2016.0280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056825543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2003.1251144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2197823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083758066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2017.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083760197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2017.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083879653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-017-1067-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083893847", 
          "https://doi.org/10.1007/s11760-017-1067-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11760-017-1067-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083893847", 
          "https://doi.org/10.1007/s11760-017-1067-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59162-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085207314", 
          "https://doi.org/10.1007/978-3-319-59162-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/thms.2017.2706658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085849578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2017.2705799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085871610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1992.223269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086299893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-1043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091210305", 
          "https://doi.org/10.1007/s10489-017-1043-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-1043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091210305", 
          "https://doi.org/10.1007/s10489-017-1043-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2017.0368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091273047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69923-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092276216", 
          "https://doi.org/10.1007/978-3-319-69923-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-69923-3_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092276216", 
          "https://doi.org/10.1007/978-3-319-69923-3_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ecs.2014.6892588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093302762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093727613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisp.2009.5304656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093825560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icoict.2017.8074680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093876663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/avss.2011.6027286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094365018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ems.2016.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094577721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/spin.2014.6776930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094637866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2006.478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095519291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4378960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095667163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-018-0688-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100679221", 
          "https://doi.org/10.1007/s10044-018-0688-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2018.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100826865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icoras.2017.8308067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101396248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2018.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104250799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219519418500380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104999536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-018-1051-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107207634", 
          "https://doi.org/10.1007/s12652-018-1051-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijapr.2018.094815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107238943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-018-1075-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107530279", 
          "https://doi.org/10.1007/s12652-018-1075-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2018.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107741455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18103583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107793668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2019.1572657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111835752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1574893614666190304125221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112555243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-019-00947-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "973fcacbb755742905ef0dfc3d2084b2ee654ac1ca8a12391ca79df662198eb1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-019-00947-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112855220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-019-00947-0", 
      "https://app.dimensions.ai/details/publication/pub.1112855220"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53990_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-019-00947-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00947-0'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      80 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-019-00947-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6a5acb909d4747f8b77533ee818f3bb7
4 schema:citation sg:pub.10.1007/978-3-319-13323-2_3
5 sg:pub.10.1007/978-3-319-23234-8_12
6 sg:pub.10.1007/978-3-319-59162-9_8
7 sg:pub.10.1007/978-3-319-69923-3_51
8 sg:pub.10.1007/978-3-540-74549-5_24
9 sg:pub.10.1007/978-3-540-74549-5_71
10 sg:pub.10.1007/978-3-642-04070-2_41
11 sg:pub.10.1007/s00138-015-0707-9
12 sg:pub.10.1007/s00138-016-0798-y
13 sg:pub.10.1007/s10044-018-0688-1
14 sg:pub.10.1007/s10489-017-1043-8
15 sg:pub.10.1007/s11760-017-1067-x
16 sg:pub.10.1007/s12652-018-1051-5
17 sg:pub.10.1007/s12652-018-1075-x
18 https://doi.org/10.1002/ima.20136
19 https://doi.org/10.1016/0031-3203(95)00067-4
20 https://doi.org/10.1016/j.compag.2018.10.013
21 https://doi.org/10.1016/j.eswa.2018.02.016
22 https://doi.org/10.1016/j.future.2018.05.002
23 https://doi.org/10.1016/j.imavis.2016.01.003
24 https://doi.org/10.1016/j.imavis.2017.02.004
25 https://doi.org/10.1016/j.jvcir.2016.03.020
26 https://doi.org/10.1016/j.neucom.2015.10.065
27 https://doi.org/10.1016/j.neucom.2017.02.006
28 https://doi.org/10.1016/j.neunet.2018.02.017
29 https://doi.org/10.1016/j.optcom.2011.02.066
30 https://doi.org/10.1016/j.patcog.2017.02.014
31 https://doi.org/10.1016/j.patrec.2015.05.016
32 https://doi.org/10.1016/j.patrec.2015.08.025
33 https://doi.org/10.1016/j.patrec.2016.05.009
34 https://doi.org/10.1016/j.patrec.2018.01.021
35 https://doi.org/10.1016/j.sigpro.2010.01.024
36 https://doi.org/10.1049/iet-cvi.2016.0280
37 https://doi.org/10.1049/iet-ipr.2017.0368
38 https://doi.org/10.1080/02533839.2016.1230028
39 https://doi.org/10.1080/0952813x.2019.1572657
40 https://doi.org/10.1109/avss.2011.6027286
41 https://doi.org/10.1109/cisp.2009.5304656
42 https://doi.org/10.1109/cvpr.1992.223269
43 https://doi.org/10.1109/ecs.2014.6892588
44 https://doi.org/10.1109/ems.2016.016
45 https://doi.org/10.1109/icip.2007.4378960
46 https://doi.org/10.1109/icoict.2017.8074680
47 https://doi.org/10.1109/icoras.2017.8308067
48 https://doi.org/10.1109/icpr.2006.478
49 https://doi.org/10.1109/icpr.2014.298
50 https://doi.org/10.1109/spin.2014.6776930
51 https://doi.org/10.1109/tcyb.2017.2705799
52 https://doi.org/10.1109/thms.2017.2706658
53 https://doi.org/10.1109/tpami.2003.1251144
54 https://doi.org/10.1109/tsmcb.2012.2197823
55 https://doi.org/10.1117/12.851296
56 https://doi.org/10.1142/s0219519418500380
57 https://doi.org/10.1504/ijapr.2018.094815
58 https://doi.org/10.2174/1574893614666190304125221
59 https://doi.org/10.3390/s18103583
60 schema:datePublished 2019-03-18
61 schema:datePublishedReg 2019-03-18
62 schema:description A biometric classification system is utilized to judge the features of human expression by recognizing distinct parameters. Human Gait Recognition (HGR) is a current research area which is mostly used for various security applications such as video surveillance etc. HGR is also utilized in medical imaging for the investigation of several diseases such as Parkinson disease which is identified by gait features. Still, various challenges occur in this domain that affects system accuracies such as shoe type, change in angle, load carriage and change in walking speed. In this research, a new approach for HGR is proposed which is based on Quartile Deviation of Normal Distribution (QDoND) for human extraction and Bayesian model along with Binomial Distribution for features fusion and best features selection. Initially, in the pre-processing step, the most excellent channel is selected and its motion flow is estimated. The motion regions are extracted by QDoND that are later utilized for shape and texture feature extraction. Afterward, the extracted features are fused by a Bayesian model based on their similarity index. Finally, BDs based best features are selected and recognition is performed on the basis of best features using multi-class support vector machine. Four publicly and famous datasets are utilized for the evaluation of proposed system such as AVA multi-view gait (AVAMVG), CASIA A, CASIA B and CASIA C having an accuracy rate of 100%, 98.8%, 87.7%, and 91.6% respectively. The results reveal that the proposed method outperforms in contrast to existing methods.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf sg:journal.1136696
67 schema:name Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
68 schema:pagination 1-18
69 schema:productId N226a14eb85884712a44ef6c9579486fe
70 N43fc1ee7fbb84d078545b1d6b84809d7
71 N864c8c76baa443118e745521e3983343
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855220
73 https://doi.org/10.1007/s13042-019-00947-0
74 schema:sdDatePublished 2019-04-11T12:12
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nea64b4031fbf4bbaa31f7ad89698d046
77 schema:url https://link.springer.com/10.1007%2Fs13042-019-00947-0
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N088f8da81c69460b8b8762d66283d156 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
82 schema:familyName Arshad
83 schema:givenName Habiba
84 rdf:type schema:Person
85 N0cba6696567d41e3a8ca5a6b13355488 rdf:first Nb555773662f348b99ee23b3d6b3379df
86 rdf:rest rdf:nil
87 N226a14eb85884712a44ef6c9579486fe schema:name dimensions_id
88 schema:value pub.1112855220
89 rdf:type schema:PropertyValue
90 N25497efeb01b42a9a3edf74a7c80b36d schema:affiliation https://www.grid.ac/institutes/grid.412621.2
91 schema:familyName Sharif
92 schema:givenName Muhammad
93 rdf:type schema:Person
94 N3af2873940704b0eb3916eadce9cf81a schema:affiliation https://www.grid.ac/institutes/grid.448709.6
95 schema:familyName Khan
96 schema:givenName Muhammad Attique
97 rdf:type schema:Person
98 N43fc1ee7fbb84d078545b1d6b84809d7 schema:name doi
99 schema:value 10.1007/s13042-019-00947-0
100 rdf:type schema:PropertyValue
101 N6a5acb909d4747f8b77533ee818f3bb7 rdf:first N088f8da81c69460b8b8762d66283d156
102 rdf:rest Nbfe0a1c54a4645919cace0315fef42a4
103 N82a7426eac9541d6a6aa1b2916e49faa rdf:first N25497efeb01b42a9a3edf74a7c80b36d
104 rdf:rest Nf5f48feb0e264817b1d79e26a2107d13
105 N864c8c76baa443118e745521e3983343 schema:name readcube_id
106 schema:value 973fcacbb755742905ef0dfc3d2084b2ee654ac1ca8a12391ca79df662198eb1
107 rdf:type schema:PropertyValue
108 N96dd46ea835b4646b41bc09b5d801ad2 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
109 schema:familyName Yasmin
110 schema:givenName Mussarat
111 rdf:type schema:Person
112 Nb555773662f348b99ee23b3d6b3379df schema:affiliation https://www.grid.ac/institutes/grid.448709.6
113 schema:familyName Javed
114 schema:givenName Muhammad Younus
115 rdf:type schema:Person
116 Nbfe0a1c54a4645919cace0315fef42a4 rdf:first N3af2873940704b0eb3916eadce9cf81a
117 rdf:rest N82a7426eac9541d6a6aa1b2916e49faa
118 Nea64b4031fbf4bbaa31f7ad89698d046 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nf5f48feb0e264817b1d79e26a2107d13 rdf:first N96dd46ea835b4646b41bc09b5d801ad2
121 rdf:rest N0cba6696567d41e3a8ca5a6b13355488
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 sg:journal.1136696 schema:issn 1868-8071
129 1868-808X
130 schema:name International Journal of Machine Learning and Cybernetics
131 rdf:type schema:Periodical
132 sg:pub.10.1007/978-3-319-13323-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028164332
133 https://doi.org/10.1007/978-3-319-13323-2_3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-319-23234-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039763229
136 https://doi.org/10.1007/978-3-319-23234-8_12
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-319-59162-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207314
139 https://doi.org/10.1007/978-3-319-59162-9_8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-319-69923-3_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092276216
142 https://doi.org/10.1007/978-3-319-69923-3_51
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-540-74549-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039115916
145 https://doi.org/10.1007/978-3-540-74549-5_24
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-540-74549-5_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051233370
148 https://doi.org/10.1007/978-3-540-74549-5_71
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-04070-2_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052312691
151 https://doi.org/10.1007/978-3-642-04070-2_41
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00138-015-0707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032619878
154 https://doi.org/10.1007/s00138-015-0707-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00138-016-0798-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963150
157 https://doi.org/10.1007/s00138-016-0798-y
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10044-018-0688-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100679221
160 https://doi.org/10.1007/s10044-018-0688-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10489-017-1043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091210305
163 https://doi.org/10.1007/s10489-017-1043-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11760-017-1067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083893847
166 https://doi.org/10.1007/s11760-017-1067-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s12652-018-1051-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107207634
169 https://doi.org/10.1007/s12652-018-1051-5
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s12652-018-1075-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107530279
172 https://doi.org/10.1007/s12652-018-1075-x
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/ima.20136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133597
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0031-3203(95)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783933
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.compag.2018.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107741455
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.eswa.2018.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100915599
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.future.2018.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104250799
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.imavis.2016.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009061666
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.imavis.2017.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083879653
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jvcir.2016.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023988776
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neucom.2015.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037061405
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.neucom.2017.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083758066
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.neunet.2018.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101400046
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.optcom.2011.02.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006919883
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.patcog.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083760197
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.patrec.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473967
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.patrec.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005500510
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.patrec.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043951876
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.patrec.2018.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100826865
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.sigpro.2010.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048798647
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1049/iet-cvi.2016.0280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825543
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1049/iet-ipr.2017.0368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091273047
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/02533839.2016.1230028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338295
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1080/0952813x.2019.1572657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111835752
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/avss.2011.6027286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094365018
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/cisp.2009.5304656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093825560
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/cvpr.1992.223269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086299893
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/ecs.2014.6892588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093302762
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/ems.2016.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094577721
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/icip.2007.4378960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095667163
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/icoict.2017.8074680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093876663
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/icoras.2017.8308067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101396248
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/icpr.2006.478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095519291
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/icpr.2014.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093727613
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/spin.2014.6776930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094637866
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tcyb.2017.2705799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085871610
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/thms.2017.2706658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085849578
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/tpami.2003.1251144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742601
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1109/tsmcb.2012.2197823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797491
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1117/12.851296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018571938
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1142/s0219519418500380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104999536
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1504/ijapr.2018.094815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107238943
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2174/1574893614666190304125221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112555243
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3390/s18103583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107793668
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.412621.2 schema:alternateName Quaid-i-Azam University
259 schema:name Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.448709.6 schema:alternateName HITEC University
262 schema:name Department of Computer Science and Engineering, HITEC University, Museum Road, Taxila, Pakistan
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...