Accelerating improved twin support vector machine with safe screening rule View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-15

AUTHORS

Weichen Wu, Yitian Xu

ABSTRACT

Improved twin support vector machine (ITSVM) is a binary classification model with strong theoretical interpretation. Compared with Twin bound support vector machine (TWBSVM), it avoids the matrix inverse operation. However, the disadvantage of slow speed is exposed during the training process. Thus authors are motivated to employ safe screening method to reduce the scale of dual ITSVM and accelerate its computational speed. More specifically, the proposed method is to identify redundant points in advance and eliminate them before actually solving the problem. If safe screening method is directly used to accelerate ITSVM, it will be inevitable to bring matrix inverse operation during the screening process. In this case, a screening method which is distinct from existing safe screening method is devised to avoid calculating inverse matrix. Meanwhile an improved dual coordinate descent method (DCDM) is employed to accelerate ITSVM. Experiments on eleven real data sets are conducted to demonstrate the effectiveness of the proposed acceleration method. More... »

PAGES

1-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-019-00946-1

DOI

http://dx.doi.org/10.1007/s13042-019-00946-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112779661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "College of Science, China Agricultural University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Weichen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "College of Science, China Agricultural University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yitian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11425-013-4718-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006808190", 
          "https://doi.org/10.1007/s11425-013-4718-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2013.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-68407-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015829835", 
          "https://doi.org/10.1007/978-0-387-68407-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-68407-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015829835", 
          "https://doi.org/10.1007/978-0-387-68407-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.09.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020029433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024774087", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46186-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024774087", 
          "https://doi.org/10.1007/978-3-319-46186-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027423142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eij.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031424147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036454543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00939948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048162364", 
          "https://doi.org/10.1007/bf00939948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052052434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2013.2279167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2130540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2513006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2587647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7164036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079156917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2688182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2688182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2688182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2017.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091914310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2749428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092079510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092180735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2017.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092547872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511801389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2018.01.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100863199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2018.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101043106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-15", 
    "datePublishedReg": "2019-03-15", 
    "description": "Improved twin support vector machine (ITSVM) is a binary classification model with strong theoretical interpretation. Compared with Twin bound support vector machine (TWBSVM), it avoids the matrix inverse operation. However, the disadvantage of slow speed is exposed during the training process. Thus authors are motivated to employ safe screening method to reduce the scale of dual ITSVM and accelerate its computational speed. More specifically, the proposed method is to identify redundant points in advance and eliminate them before actually solving the problem. If safe screening method is directly used to accelerate ITSVM, it will be inevitable to bring matrix inverse operation during the screening process. In this case, a screening method which is distinct from existing safe screening method is devised to avoid calculating inverse matrix. Meanwhile an improved dual coordinate descent method (DCDM) is employed to accelerate ITSVM. Experiments on eleven real data sets are conducted to demonstrate the effectiveness of the proposed acceleration method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-019-00946-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Accelerating improved twin support vector machine with safe screening rule", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cadbeefc77782c431ba1aff22bf941e7f6e227e2c06bce9f870c82ac74691d80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-019-00946-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112779661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-019-00946-1", 
      "https://app.dimensions.ai/details/publication/pub.1112779661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29216_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-019-00946-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00946-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00946-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00946-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00946-1'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-019-00946-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N13ee9d22d4ba45269ef4762cf0660fd6
4 schema:citation sg:pub.10.1007/978-0-387-68407-9
5 sg:pub.10.1007/978-3-319-46186-1
6 sg:pub.10.1007/bf00939948
7 sg:pub.10.1007/bf00994018
8 sg:pub.10.1007/s11425-013-4718-6
9 https://app.dimensions.ai/details/publication/pub.1024774087
10 https://doi.org/10.1016/j.eij.2014.12.003
11 https://doi.org/10.1016/j.engappai.2017.10.011
12 https://doi.org/10.1016/j.eswa.2008.09.066
13 https://doi.org/10.1016/j.ins.2012.09.009
14 https://doi.org/10.1016/j.knosys.2013.01.008
15 https://doi.org/10.1016/j.knosys.2014.10.011
16 https://doi.org/10.1016/j.knosys.2018.02.018
17 https://doi.org/10.1016/j.neucom.2017.09.092
18 https://doi.org/10.1016/j.neucom.2018.01.083
19 https://doi.org/10.1016/j.patcog.2012.06.019
20 https://doi.org/10.1016/j.patcog.2017.09.035
21 https://doi.org/10.1017/cbo9780511801389
22 https://doi.org/10.1109/isbi.2015.7164036
23 https://doi.org/10.1109/tcyb.2013.2279167
24 https://doi.org/10.1109/tnn.2011.2130540
25 https://doi.org/10.1109/tnnls.2015.2513006
26 https://doi.org/10.1109/tnnls.2017.2688182
27 https://doi.org/10.1109/tnnls.2017.2749428
28 https://doi.org/10.1109/tpami.2007.1068
29 https://doi.org/10.1109/tpami.2016.2587647
30 https://doi.org/10.1145/1390156.1390208
31 schema:datePublished 2019-03-15
32 schema:datePublishedReg 2019-03-15
33 schema:description Improved twin support vector machine (ITSVM) is a binary classification model with strong theoretical interpretation. Compared with Twin bound support vector machine (TWBSVM), it avoids the matrix inverse operation. However, the disadvantage of slow speed is exposed during the training process. Thus authors are motivated to employ safe screening method to reduce the scale of dual ITSVM and accelerate its computational speed. More specifically, the proposed method is to identify redundant points in advance and eliminate them before actually solving the problem. If safe screening method is directly used to accelerate ITSVM, it will be inevitable to bring matrix inverse operation during the screening process. In this case, a screening method which is distinct from existing safe screening method is devised to avoid calculating inverse matrix. Meanwhile an improved dual coordinate descent method (DCDM) is employed to accelerate ITSVM. Experiments on eleven real data sets are conducted to demonstrate the effectiveness of the proposed acceleration method.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136696
38 schema:name Accelerating improved twin support vector machine with safe screening rule
39 schema:pagination 1-14
40 schema:productId N03466d8c79774ef8846731b1bba8d5f6
41 N7f8f743215004f6e88451aaee2e877c1
42 Nab50aae9c6ba46bea7cfb3164087dce3
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112779661
44 https://doi.org/10.1007/s13042-019-00946-1
45 schema:sdDatePublished 2019-04-11T11:57
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N21bf8b32267d429cbabec272984d009c
48 schema:url https://link.springer.com/10.1007%2Fs13042-019-00946-1
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N03466d8c79774ef8846731b1bba8d5f6 schema:name readcube_id
53 schema:value cadbeefc77782c431ba1aff22bf941e7f6e227e2c06bce9f870c82ac74691d80
54 rdf:type schema:PropertyValue
55 N0390f8542754426dbef21d164730c2de rdf:first Ndf0e334c99ba4d6ea49ce192a61feda3
56 rdf:rest rdf:nil
57 N13ee9d22d4ba45269ef4762cf0660fd6 rdf:first N226d1272bc7a4ef08f39bf9e0fb55a2d
58 rdf:rest N0390f8542754426dbef21d164730c2de
59 N21bf8b32267d429cbabec272984d009c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N226d1272bc7a4ef08f39bf9e0fb55a2d schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
62 schema:familyName Wu
63 schema:givenName Weichen
64 rdf:type schema:Person
65 N7f8f743215004f6e88451aaee2e877c1 schema:name dimensions_id
66 schema:value pub.1112779661
67 rdf:type schema:PropertyValue
68 Nab50aae9c6ba46bea7cfb3164087dce3 schema:name doi
69 schema:value 10.1007/s13042-019-00946-1
70 rdf:type schema:PropertyValue
71 Ndf0e334c99ba4d6ea49ce192a61feda3 schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
72 schema:familyName Xu
73 schema:givenName Yitian
74 rdf:type schema:Person
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1136696 schema:issn 1868-8071
82 1868-808X
83 schema:name International Journal of Machine Learning and Cybernetics
84 rdf:type schema:Periodical
85 sg:pub.10.1007/978-0-387-68407-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015829835
86 https://doi.org/10.1007/978-0-387-68407-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-319-46186-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024774087
89 https://doi.org/10.1007/978-3-319-46186-1
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00939948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162364
92 https://doi.org/10.1007/bf00939948
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
95 https://doi.org/10.1007/bf00994018
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11425-013-4718-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006808190
98 https://doi.org/10.1007/s11425-013-4718-6
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1024774087 schema:CreativeWork
101 https://doi.org/10.1016/j.eij.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031424147
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.engappai.2017.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092547872
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.eswa.2008.09.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020029433
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ins.2012.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027423142
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.knosys.2013.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190548
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.knosys.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036454543
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.knosys.2018.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101043106
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.neucom.2017.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092180735
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.neucom.2018.01.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100863199
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.patcog.2012.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052052434
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.patcog.2017.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091914310
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1017/cbo9780511801389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665575
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/isbi.2015.7164036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079156917
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tcyb.2013.2279167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579535
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tnn.2011.2130540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717879
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tnnls.2015.2513006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719086
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tnnls.2017.2688182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084824842
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tnnls.2017.2749428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092079510
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tpami.2007.1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743200
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tpami.2016.2587647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745131
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/1390156.1390208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538839
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.22935.3f schema:alternateName China Agricultural University
144 schema:name College of Science, China Agricultural University, 100083, Beijing, China
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...