Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-15

AUTHORS

Nagaraj Balakrishnan, Arunkumar Rajendran, Karthigaikumar Palanivel

ABSTRACT

In this new era, any business, industrial production, etc. are in need of information in analytics to start and continue its new move towards increasing their outcomes, efficiency, and performance. In this way, many analytics and analytics software’s are making promising results and trying to make more efficient solutions for the betterment of tomorrow. Many basic algorithms like K-means family, FCM family, etc. are used for the process. Nevertheless, processing the insignificant data, which is no way useful and may sometimes distracts the significant features that are most needed, a Deep Learning approach is used before Big-Data analytics. On the other hand, the features of the significant data should have more in-depth understanding to explore more possibilities that could help the better tomorrow. Here we propose a Meticulous Fuzzy Convolution C-Means (MFCCM) algorithm by mutating the nature of Convolutional Neural Network (CNN) to adopt the nature of significant feature understanding of deep learning method. The main novel idea behind this algorithm is to process the data through the optimized Big-Data algorithm through the process of effective feature selection. Here the process involves the enhancement of Deep Learning algorithm (CNN) with the FCM to select the significant features. This algorithm shows promising results as it gives better segmentation even in the presence of variance noisy data. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-019-00945-2

DOI

http://dx.doi.org/10.1007/s13042-019-00945-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112775876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Karpagam College of Engineering, Coimbatore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balakrishnan", 
        "givenName": "Nagaraj", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Karpagam College of Engineering, Coimbatore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajendran", 
        "givenName": "Arunkumar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Karpagam College of Engineering, Coimbatore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palanivel", 
        "givenName": "Karthigaikumar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10798587.2012.10643251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004966274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jei.21.4.040901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006217401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2006.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011271820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1497577.1497578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011825012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2423636.2423643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017215313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2009.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019119600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21642583.2013.770375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021777198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11220-016-0147-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023242697", 
          "https://doi.org/10.1007/s11220-016-0147-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11220-016-0147-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023242697", 
          "https://doi.org/10.1007/s11220-016-0147-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-016-0518-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023614069", 
          "https://doi.org/10.1007/s00607-016-0518-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-016-0518-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023614069", 
          "https://doi.org/10.1007/s00607-016-0518-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029573944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030517994", 
          "https://doi.org/10.1038/nature14236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032043586", 
          "https://doi.org/10.1007/s10115-007-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032043586", 
          "https://doi.org/10.1007/s10115-007-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032730555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(99)00272-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034030056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-016-0585-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718527", 
          "https://doi.org/10.1007/s11554-016-0585-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-016-0585-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718527", 
          "https://doi.org/10.1007/s11554-016-0585-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-013-1490-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037781227", 
          "https://doi.org/10.1007/s11042-013-1490-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-2059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042369603", 
          "https://doi.org/10.1007/s00521-015-2059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2632158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046023682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2011.0128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2015.2411856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061339511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbdata.2016.2622288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061523326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tciaig.2014.2376982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061549014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2524557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2040763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14233/ajchem.2014.19005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067223700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078635588", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-017-4073-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519423", 
          "https://doi.org/10.1007/s11277-017-4073-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-017-4073-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519423", 
          "https://doi.org/10.1007/s11277-017-4073-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2352/issn.2470-1173.2016.8.mwsf-078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084798463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11648/j.cssp.s.2014030601.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085240790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2017.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090904008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2017.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092534315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.2013.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093990889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdpsw.2012.234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094271716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/get.2015.7453840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094294588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/get.2015.7453845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094894653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aina.2016.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095593890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2794346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100541053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-018-0831-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104436976", 
          "https://doi.org/10.1007/s13042-018-0831-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-018-0831-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104436976", 
          "https://doi.org/10.1007/s13042-018-0831-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3687-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106195718", 
          "https://doi.org/10.1007/s00521-018-3687-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3687-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106195718", 
          "https://doi.org/10.1007/s00521-018-3687-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/41703503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107655029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-15", 
    "datePublishedReg": "2019-03-15", 
    "description": "In this new era, any business, industrial production, etc. are in need of information in analytics to start and continue its new move towards increasing their outcomes, efficiency, and performance. In this way, many analytics and analytics software\u2019s are making promising results and trying to make more efficient solutions for the betterment of tomorrow. Many basic algorithms like K-means family, FCM family, etc. are used for the process. Nevertheless, processing the insignificant data, which is no way useful and may sometimes distracts the significant features that are most needed, a Deep Learning approach is used before Big-Data analytics. On the other hand, the features of the significant data should have more in-depth understanding to explore more possibilities that could help the better tomorrow. Here we propose a Meticulous Fuzzy Convolution C-Means (MFCCM) algorithm by mutating the nature of Convolutional Neural Network (CNN) to adopt the nature of significant feature understanding of deep learning method. The main novel idea behind this algorithm is to process the data through the optimized Big-Data algorithm through the process of effective feature selection. Here the process involves the enhancement of Deep Learning algorithm (CNN) with the FCM to select the significant features. This algorithm shows promising results as it gives better segmentation even in the presence of variance noisy data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-019-00945-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73dfdeaf6a71c0ab494ddbbf9ba6bebe2759634a977da7b9c991af8e53981ef4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-019-00945-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112775876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-019-00945-2", 
      "https://app.dimensions.ai/details/publication/pub.1112775876"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29183_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-019-00945-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00945-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00945-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00945-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-019-00945-2'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-019-00945-2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nbed24dd5761b47988bea9b46d93df362
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1007/s00521-015-2059-9
6 sg:pub.10.1007/s00521-018-3687-7
7 sg:pub.10.1007/s00607-016-0518-5
8 sg:pub.10.1007/s10115-007-0114-2
9 sg:pub.10.1007/s11042-013-1490-0
10 sg:pub.10.1007/s11220-016-0147-2
11 sg:pub.10.1007/s11277-017-4073-y
12 sg:pub.10.1007/s11554-016-0585-z
13 sg:pub.10.1007/s13042-018-0831-8
14 sg:pub.10.1038/nature14236
15 sg:pub.10.1038/nature14539
16 https://app.dimensions.ai/details/publication/pub.1032573094
17 https://app.dimensions.ai/details/publication/pub.1078635588
18 https://doi.org/10.1016/j.compeleceng.2017.08.023
19 https://doi.org/10.1016/j.fss.2007.03.004
20 https://doi.org/10.1016/j.ijpe.2014.12.031
21 https://doi.org/10.1016/j.media.2017.07.005
22 https://doi.org/10.1016/j.patcog.2006.07.011
23 https://doi.org/10.1016/j.patrec.2009.09.011
24 https://doi.org/10.1016/s0731-7085(99)00272-1
25 https://doi.org/10.1049/iet-ipr.2011.0128
26 https://doi.org/10.1080/10798587.2012.10643251
27 https://doi.org/10.1080/21642583.2013.770375
28 https://doi.org/10.1109/access.2018.2794346
29 https://doi.org/10.1109/aina.2016.104
30 https://doi.org/10.1109/get.2015.7453840
31 https://doi.org/10.1109/get.2015.7453845
32 https://doi.org/10.1109/hicss.2013.645
33 https://doi.org/10.1109/ipdpsw.2012.234
34 https://doi.org/10.1109/jsyst.2015.2411856
35 https://doi.org/10.1109/tbdata.2016.2622288
36 https://doi.org/10.1109/tciaig.2014.2376982
37 https://doi.org/10.1109/tgrs.2016.2524557
38 https://doi.org/10.1109/tip.2010.2040763
39 https://doi.org/10.1117/1.jei.21.4.040901
40 https://doi.org/10.1145/1497577.1497578
41 https://doi.org/10.1145/2423636.2423643
42 https://doi.org/10.1145/2632158
43 https://doi.org/10.11648/j.cssp.s.2014030601.11
44 https://doi.org/10.14233/ajchem.2014.19005
45 https://doi.org/10.2307/41703503
46 https://doi.org/10.2352/issn.2470-1173.2016.8.mwsf-078
47 schema:datePublished 2019-03-15
48 schema:datePublishedReg 2019-03-15
49 schema:description In this new era, any business, industrial production, etc. are in need of information in analytics to start and continue its new move towards increasing their outcomes, efficiency, and performance. In this way, many analytics and analytics software’s are making promising results and trying to make more efficient solutions for the betterment of tomorrow. Many basic algorithms like K-means family, FCM family, etc. are used for the process. Nevertheless, processing the insignificant data, which is no way useful and may sometimes distracts the significant features that are most needed, a Deep Learning approach is used before Big-Data analytics. On the other hand, the features of the significant data should have more in-depth understanding to explore more possibilities that could help the better tomorrow. Here we propose a Meticulous Fuzzy Convolution C-Means (MFCCM) algorithm by mutating the nature of Convolutional Neural Network (CNN) to adopt the nature of significant feature understanding of deep learning method. The main novel idea behind this algorithm is to process the data through the optimized Big-Data algorithm through the process of effective feature selection. Here the process involves the enhancement of Deep Learning algorithm (CNN) with the FCM to select the significant features. This algorithm shows promising results as it gives better segmentation even in the presence of variance noisy data.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1136696
54 schema:name Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
55 schema:pagination 1-12
56 schema:productId N5840605a13374867be565d7db71ab3c2
57 N5b3eaf8130714d2abe5b92b62af57dab
58 N7bd4c8f3c201426b89b39168fe041f55
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112775876
60 https://doi.org/10.1007/s13042-019-00945-2
61 schema:sdDatePublished 2019-04-11T11:51
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nceb9621582a0418ab2ae22d09a3b5136
64 schema:url https://link.springer.com/10.1007%2Fs13042-019-00945-2
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N287f8903e8e747f2b169020eb4482caa schema:affiliation https://www.grid.ac/institutes/grid.252262.3
69 schema:familyName Rajendran
70 schema:givenName Arunkumar
71 rdf:type schema:Person
72 N2ed68d0996f44e6a97adf91afbe0fb3d rdf:first N844aff830466441f894135ae6f04a32d
73 rdf:rest rdf:nil
74 N5840605a13374867be565d7db71ab3c2 schema:name doi
75 schema:value 10.1007/s13042-019-00945-2
76 rdf:type schema:PropertyValue
77 N5b3eaf8130714d2abe5b92b62af57dab schema:name dimensions_id
78 schema:value pub.1112775876
79 rdf:type schema:PropertyValue
80 N7bd4c8f3c201426b89b39168fe041f55 schema:name readcube_id
81 schema:value 73dfdeaf6a71c0ab494ddbbf9ba6bebe2759634a977da7b9c991af8e53981ef4
82 rdf:type schema:PropertyValue
83 N844aff830466441f894135ae6f04a32d schema:affiliation https://www.grid.ac/institutes/grid.252262.3
84 schema:familyName Palanivel
85 schema:givenName Karthigaikumar
86 rdf:type schema:Person
87 N9ba354528bc245d4b22e3792003391d1 rdf:first N287f8903e8e747f2b169020eb4482caa
88 rdf:rest N2ed68d0996f44e6a97adf91afbe0fb3d
89 Nbed24dd5761b47988bea9b46d93df362 rdf:first Nf3aa92f0036341b98ed5686c033f6f5b
90 rdf:rest N9ba354528bc245d4b22e3792003391d1
91 Nceb9621582a0418ab2ae22d09a3b5136 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nf3aa92f0036341b98ed5686c033f6f5b schema:affiliation https://www.grid.ac/institutes/grid.252262.3
94 schema:familyName Balakrishnan
95 schema:givenName Nagaraj
96 rdf:type schema:Person
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information Systems
102 rdf:type schema:DefinedTerm
103 sg:journal.1136696 schema:issn 1868-8071
104 1868-808X
105 schema:name International Journal of Machine Learning and Cybernetics
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
108 https://doi.org/10.1007/978-0-387-84858-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00521-015-2059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042369603
111 https://doi.org/10.1007/s00521-015-2059-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00521-018-3687-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106195718
114 https://doi.org/10.1007/s00521-018-3687-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00607-016-0518-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023614069
117 https://doi.org/10.1007/s00607-016-0518-5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10115-007-0114-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032043586
120 https://doi.org/10.1007/s10115-007-0114-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11042-013-1490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037781227
123 https://doi.org/10.1007/s11042-013-1490-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11220-016-0147-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023242697
126 https://doi.org/10.1007/s11220-016-0147-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11277-017-4073-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519423
129 https://doi.org/10.1007/s11277-017-4073-y
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11554-016-0585-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718527
132 https://doi.org/10.1007/s11554-016-0585-z
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s13042-018-0831-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104436976
135 https://doi.org/10.1007/s13042-018-0831-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature14236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030517994
138 https://doi.org/10.1038/nature14236
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
141 https://doi.org/10.1038/nature14539
142 rdf:type schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1078635588 schema:CreativeWork
145 https://doi.org/10.1016/j.compeleceng.2017.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092534315
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.fss.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032730555
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijpe.2014.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029573944
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.media.2017.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090904008
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.patcog.2006.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011271820
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.patrec.2009.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019119600
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0731-7085(99)00272-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034030056
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1049/iet-ipr.2011.0128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829057
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/10798587.2012.10643251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004966274
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/21642583.2013.770375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021777198
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/access.2018.2794346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100541053
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/aina.2016.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095593890
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/get.2015.7453840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094294588
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/get.2015.7453845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094894653
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/hicss.2013.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093990889
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/ipdpsw.2012.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094271716
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/jsyst.2015.2411856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339511
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tbdata.2016.2622288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523326
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tciaig.2014.2376982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061549014
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tgrs.2016.2524557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614244
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tip.2010.2040763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642420
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1117/1.jei.21.4.040901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006217401
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1497577.1497578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011825012
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/2423636.2423643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017215313
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/2632158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046023682
194 rdf:type schema:CreativeWork
195 https://doi.org/10.11648/j.cssp.s.2014030601.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085240790
196 rdf:type schema:CreativeWork
197 https://doi.org/10.14233/ajchem.2014.19005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067223700
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/41703503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107655029
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2352/issn.2470-1173.2016.8.mwsf-078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084798463
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
204 schema:name Karpagam College of Engineering, Coimbatore, India
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...