Separable-spectral convolution and inception network for hyperspectral image super-resolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

Ke Zheng, Lianru Gao, Qiong Ran, Ximin Cui, Bing Zhang, Wenzhi Liao, Sen Jia

ABSTRACT

Due to the limitation of the imaging system, it is hard to get Hyperspectral Image (HSI) with very high spatial resolution. Super-Resolution (SR) is a handling missing data technology to restore high-frequency information from the low-resolution image, can be used to solve this problem. Recently, Deep Learning (DL) has achieved great performance in computer vision, including SR. However, most DL-based HSI SR methods neglect the spectral disorder caused by normal 2D convolution. This paper proposes a novel end–end deep learning-based network named Separable-Spectral and Inception Network (SSIN) for HSI SR. In SSIN, the feature extraction module independently extracts features of each band image, and then these features are fused together to further exploit residual image by using feature fusion module. In reconstruction module, a multi-path connection is built to obtain features of different levels to restore high spatial resolution image in a coarse-to-fine manner. Experiments are implemented on two datasets include both indoor and airborne HSIs, and the performances of SSIN are evaluated in different conditions. Experimental results show that adding several separable spectral convolutions and multi-path connection in a deep network can greatly improve the SR performance, and SSIN achieves higher accuracy and better visualization compare with other methods. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-018-00911-4

DOI

http://dx.doi.org/10.1007/s13042-018-00911-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111058703


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China", 
            "Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Ke", 
        "id": "sg:person.015760361373.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760361373.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen University", 
          "id": "https://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China", 
            "College of Computer Science and Software Engineering, Computer Vision Research Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Lianru", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology", 
          "id": "https://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "College of Information Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ran", 
        "givenName": "Qiong", 
        "id": "sg:person.014166022426.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166022426.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Mining and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Ximin", 
        "id": "sg:person.01166642375.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166642375.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department Telecommunications and Information Processing, Ghent University, 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Wenzhi", 
        "id": "sg:person.012263700275.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263700275.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen University", 
          "id": "https://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "College of Computer Science and Software Engineering, Computer Vision Research Institute, Shenzhen University, 518060, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Sen", 
        "id": "sg:person.07774604370.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/rs8040355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005765753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2016.1264027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011101525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46448-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017177111", 
          "https://doi.org/10.1007/978-3-319-46448-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2050625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019629051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028804750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150102041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035572431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-16817-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040555336", 
          "https://doi.org/10.1007/978-3-319-16817-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10584-0_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053013383", 
          "https://doi.org/10.1007/978-3-319-10584-0_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2016.2542113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2016.2536638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061580266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.837324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2616355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2542360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2601268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2016.2608780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2015.2439281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2577031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprs-archives-xli-b3-883-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072674792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsarchives-xli-b3-883-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072676295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2017.2655112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083832909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2017.2657818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084203639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085421511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2017.2737637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091458397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9111139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092570645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093279302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093359587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093659215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093754462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2017.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093767955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7299156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093990376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094030586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094174867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094805601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095089632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095271875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095670660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095811486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2017.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095836438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2017.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095843900"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "Due to the limitation of the imaging system, it is hard to get Hyperspectral Image (HSI) with very high spatial resolution. Super-Resolution (SR) is a handling missing data technology to restore high-frequency information from the low-resolution image, can be used to solve this problem. Recently, Deep Learning (DL) has achieved great performance in computer vision, including SR. However, most DL-based HSI SR methods neglect the spectral disorder caused by normal 2D convolution. This paper proposes a novel end\u2013end deep learning-based network named Separable-Spectral and Inception Network (SSIN) for HSI SR. In SSIN, the feature extraction module independently extracts features of each band image, and then these features are fused together to further exploit residual image by using feature fusion module. In reconstruction module, a multi-path connection is built to obtain features of different levels to restore high spatial resolution image in a coarse-to-fine manner. Experiments are implemented on two datasets include both indoor and airborne HSIs, and the performances of SSIN are evaluated in different conditions. Experimental results show that adding several separable spectral convolutions and multi-path connection in a deep network can greatly improve the SR performance, and SSIN achieves higher accuracy and better visualization compare with other methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-018-00911-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Separable-spectral convolution and inception network for hyperspectral image super-resolution", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60436167da57b459d57200ef8e4bed9b3b7d63c5bdc7d66aefd13872e48e891a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-018-00911-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111058703"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-018-00911-4", 
      "https://app.dimensions.ai/details/publication/pub.1111058703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90751_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-018-00911-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00911-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00911-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00911-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00911-4'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-018-00911-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9b9fce10c1c24d248ec83509015b7377
4 schema:citation sg:pub.10.1007/978-3-319-10584-0_5
5 sg:pub.10.1007/978-3-319-16817-3_8
6 sg:pub.10.1007/978-3-319-46448-0_2
7 https://doi.org/10.1016/j.neucom.2017.05.024
8 https://doi.org/10.1016/j.sigpro.2012.01.020
9 https://doi.org/10.1080/01431161.2016.1264027
10 https://doi.org/10.1109/cvpr.2004.1315043
11 https://doi.org/10.1109/cvpr.2008.4587647
12 https://doi.org/10.1109/cvpr.2015.7298986
13 https://doi.org/10.1109/cvpr.2015.7299156
14 https://doi.org/10.1109/cvpr.2016.181
15 https://doi.org/10.1109/cvpr.2016.182
16 https://doi.org/10.1109/cvpr.2016.206
17 https://doi.org/10.1109/cvpr.2016.207
18 https://doi.org/10.1109/cvpr.2016.90
19 https://doi.org/10.1109/cvpr.2016.91
20 https://doi.org/10.1109/cvpr.2017.19
21 https://doi.org/10.1109/cvpr.2017.298
22 https://doi.org/10.1109/cvprw.2017.151
23 https://doi.org/10.1109/iccv.2013.241
24 https://doi.org/10.1109/iccv.2015.50
25 https://doi.org/10.1109/jstars.2016.2542113
26 https://doi.org/10.1109/jstars.2017.2655112
27 https://doi.org/10.1109/lgrs.2017.2657818
28 https://doi.org/10.1109/lgrs.2017.2737637
29 https://doi.org/10.1109/tcyb.2016.2536638
30 https://doi.org/10.1109/tgrs.2004.837324
31 https://doi.org/10.1109/tgrs.2016.2616355
32 https://doi.org/10.1109/tip.2010.2050625
33 https://doi.org/10.1109/tip.2016.2542360
34 https://doi.org/10.1109/tip.2016.2601268
35 https://doi.org/10.1109/tmm.2016.2608780
36 https://doi.org/10.1109/tpami.2015.2439281
37 https://doi.org/10.1109/tpami.2016.2577031
38 https://doi.org/10.1145/3065386
39 https://doi.org/10.3390/rs8040355
40 https://doi.org/10.3390/rs9111139
41 https://doi.org/10.3390/s150102041
42 https://doi.org/10.5194/isprs-archives-xli-b3-883-2016
43 https://doi.org/10.5194/isprsarchives-xli-b3-883-2016
44 schema:datePublished 2019-01-02
45 schema:datePublishedReg 2019-01-02
46 schema:description Due to the limitation of the imaging system, it is hard to get Hyperspectral Image (HSI) with very high spatial resolution. Super-Resolution (SR) is a handling missing data technology to restore high-frequency information from the low-resolution image, can be used to solve this problem. Recently, Deep Learning (DL) has achieved great performance in computer vision, including SR. However, most DL-based HSI SR methods neglect the spectral disorder caused by normal 2D convolution. This paper proposes a novel end–end deep learning-based network named Separable-Spectral and Inception Network (SSIN) for HSI SR. In SSIN, the feature extraction module independently extracts features of each band image, and then these features are fused together to further exploit residual image by using feature fusion module. In reconstruction module, a multi-path connection is built to obtain features of different levels to restore high spatial resolution image in a coarse-to-fine manner. Experiments are implemented on two datasets include both indoor and airborne HSIs, and the performances of SSIN are evaluated in different conditions. Experimental results show that adding several separable spectral convolutions and multi-path connection in a deep network can greatly improve the SR performance, and SSIN achieves higher accuracy and better visualization compare with other methods.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1136696
51 schema:name Separable-spectral convolution and inception network for hyperspectral image super-resolution
52 schema:pagination 1-15
53 schema:productId N1e74ebe02c6f45c0aebf971d0cc789dc
54 Nb3bab4b4a1e645cab9e8609ff5ddd395
55 Nb8e6ce70ea464c5ab4c64df1d0c31b53
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111058703
57 https://doi.org/10.1007/s13042-018-00911-4
58 schema:sdDatePublished 2019-04-11T08:34
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N355b9cec0e744ce694fd2bcde6c7b7e6
61 schema:url https://link.springer.com/10.1007%2Fs13042-018-00911-4
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1e74ebe02c6f45c0aebf971d0cc789dc schema:name doi
66 schema:value 10.1007/s13042-018-00911-4
67 rdf:type schema:PropertyValue
68 N355b9cec0e744ce694fd2bcde6c7b7e6 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N4ec7b58ee54c40609f8fbfb996e0b77f schema:affiliation https://www.grid.ac/institutes/grid.263488.3
71 schema:familyName Gao
72 schema:givenName Lianru
73 rdf:type schema:Person
74 N60cfa7bd3f904000901c2801450a1e04 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
75 schema:familyName Zhang
76 schema:givenName Bing
77 rdf:type schema:Person
78 N65d2e0eec0024c409cae388b25c497ea rdf:first N60cfa7bd3f904000901c2801450a1e04
79 rdf:rest Nf22c54f1a7cb4abc8cbd3c6f419cc5bd
80 N9591efa8af044b61a3c6d45c5680bd98 rdf:first sg:person.07774604370.25
81 rdf:rest rdf:nil
82 N9b9fce10c1c24d248ec83509015b7377 rdf:first sg:person.015760361373.81
83 rdf:rest Nfc782f8ecaae4b7fb39fed99e574bea4
84 Nb3bab4b4a1e645cab9e8609ff5ddd395 schema:name dimensions_id
85 schema:value pub.1111058703
86 rdf:type schema:PropertyValue
87 Nb8e6ce70ea464c5ab4c64df1d0c31b53 schema:name readcube_id
88 schema:value 60436167da57b459d57200ef8e4bed9b3b7d63c5bdc7d66aefd13872e48e891a
89 rdf:type schema:PropertyValue
90 Ne5122d60fd2f4299aba2ae19d7591d5b rdf:first sg:person.014166022426.99
91 rdf:rest Ne8f58208464c47da8ce6e6003893ca33
92 Ne8f58208464c47da8ce6e6003893ca33 rdf:first sg:person.01166642375.30
93 rdf:rest N65d2e0eec0024c409cae388b25c497ea
94 Nf22c54f1a7cb4abc8cbd3c6f419cc5bd rdf:first sg:person.012263700275.36
95 rdf:rest N9591efa8af044b61a3c6d45c5680bd98
96 Nfc782f8ecaae4b7fb39fed99e574bea4 rdf:first N4ec7b58ee54c40609f8fbfb996e0b77f
97 rdf:rest Ne5122d60fd2f4299aba2ae19d7591d5b
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1136696 schema:issn 1868-8071
105 1868-808X
106 schema:name International Journal of Machine Learning and Cybernetics
107 rdf:type schema:Periodical
108 sg:person.01166642375.30 schema:affiliation https://www.grid.ac/institutes/grid.411510.0
109 schema:familyName Cui
110 schema:givenName Ximin
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166642375.30
112 rdf:type schema:Person
113 sg:person.012263700275.36 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
114 schema:familyName Liao
115 schema:givenName Wenzhi
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263700275.36
117 rdf:type schema:Person
118 sg:person.014166022426.99 schema:affiliation https://www.grid.ac/institutes/grid.48166.3d
119 schema:familyName Ran
120 schema:givenName Qiong
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166022426.99
122 rdf:type schema:Person
123 sg:person.015760361373.81 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
124 schema:familyName Zheng
125 schema:givenName Ke
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760361373.81
127 rdf:type schema:Person
128 sg:person.07774604370.25 schema:affiliation https://www.grid.ac/institutes/grid.263488.3
129 schema:familyName Jia
130 schema:givenName Sen
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-319-10584-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053013383
134 https://doi.org/10.1007/978-3-319-10584-0_5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-319-16817-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040555336
137 https://doi.org/10.1007/978-3-319-16817-3_8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-319-46448-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177111
140 https://doi.org/10.1007/978-3-319-46448-0_2
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.neucom.2017.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085421511
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sigpro.2012.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028804750
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/01431161.2016.1264027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011101525
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/cvpr.2004.1315043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095670660
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/cvpr.2008.4587647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093279302
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/cvpr.2015.7298986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094030586
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/cvpr.2015.7299156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093990376
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/cvpr.2016.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094805601
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/cvpr.2016.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093659215
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/cvpr.2016.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094174867
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/cvpr.2016.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095089632
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cvpr.2016.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093359587
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/cvpr.2016.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095811486
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/cvpr.2017.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095836438
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/cvpr.2017.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095843900
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/cvprw.2017.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093767955
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/iccv.2013.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093754462
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/iccv.2015.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095271875
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/jstars.2016.2542113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334192
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/jstars.2017.2655112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083832909
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/lgrs.2017.2657818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084203639
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/lgrs.2017.2737637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091458397
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tcyb.2016.2536638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580266
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tgrs.2004.837324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609278
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tgrs.2016.2616355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614597
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/tip.2010.2050625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019629051
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tip.2016.2542360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644920
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/tip.2016.2601268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645171
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/tmm.2016.2608780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698763
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/tpami.2015.2439281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744884
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/tpami.2016.2577031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745117
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3390/rs8040355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005765753
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3390/rs9111139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092570645
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3390/s150102041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035572431
211 rdf:type schema:CreativeWork
212 https://doi.org/10.5194/isprs-archives-xli-b3-883-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072674792
213 rdf:type schema:CreativeWork
214 https://doi.org/10.5194/isprsarchives-xli-b3-883-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072676295
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.263488.3 schema:alternateName Shenzhen University
217 schema:name College of Computer Science and Software Engineering, Computer Vision Research Institute, Shenzhen University, 518060, Shenzhen, China
218 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
221 schema:name Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
222 University of Chinese Academy of Sciences, 100049, Beijing, China
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.411510.0 schema:alternateName China University of Mining and Technology
225 schema:name College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
228 schema:name College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
229 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.48166.3d schema:alternateName Beijing University of Chemical Technology
232 schema:name College of Information Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
235 schema:name Department Telecommunications and Information Processing, Ghent University, 9000, Ghent, Belgium
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...