Attribute reduction and rule acquisition of formal decision context based on object (property) oriented concept lattices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

Keyun Qin, Bo Li, Zheng Pei

ABSTRACT

The study of concept lattices, property oriented concept lattices and object oriented concept lattices provides complementary conceptual structures, which can be used to search, analyze and extract information from data sets. This paper is devoted to the study of rule acquisition and attribute reduction of formal decision context. Based on object oriented concepts and property oriented concepts, the notions of object oriented decision rules and property oriented decision rules are proposed. By using some equivalence relations on the set of extents of the related conditional concept lattices and decision concept lattices, the rule acquisition methods are presented. The attribute reduction approaches for formal decision context to preserve the object oriented decision rules and property oriented decision rules are put forward by using discernibility attributes. More... »

PAGES

1-14

References to SciGraph publications

  • 1982. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts in ORDERED SETS
  • 2017-02. Interval sets and three-way concept analysis in incomplete contexts in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2004. A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis in ROUGH SETS AND CURRENT TRENDS IN COMPUTING
  • 2001-10. Machine Learning on the Basis of Formal Concept Analysis in AUTOMATION AND REMOTE CONTROL
  • 2017-08. A data reduction method in formal fuzzy contexts in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2017-02. Concept acquisition approach of object-oriented concept lattices in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2009. The Reduction Theory of Object Oriented Concept Lattices and Property Oriented Concept Lattices in ROUGH SETS AND KNOWLEDGE TECHNOLOGY
  • 2017-02. Cognitive concept learning from incomplete information in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2017-02. Decomposition methods of formal contexts to construct concept lattices in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 1999. Formal Concept Analysis, Mathematical Foundations in NONE
  • 2005-12. Attribute reduction theory and approach to concept lattice in SCIENCE IN CHINA SERIES F INFORMATION SCIENCES
  • 2014-10. Attribute reductions in object-oriented concept lattices in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2010. Formal Concept Analysis in Knowledge Discovery: A Survey in CONCEPTUAL STRUCTURES: FROM INFORMATION TO INTELLIGENCE
  • 2011-12. Attribute reduction in decision formal context based on homomorphism in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2008-07. Attribute reduction theory of concept lattice based on decision formal contexts in SCIENCE IN CHINA SERIES F INFORMATION SCIENCES
  • 1982-10. Rough sets in INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
  • 2017-02. Attribute reduction in inconsistent formal decision contexts based on congruence relations in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2004. Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference, Birmingham, UK, September 18-22, 2004. Proceedings in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13042-018-00907-0

    DOI

    http://dx.doi.org/10.1007/s13042-018-00907-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111058702


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southwest Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "School of Mathematics, Southwest Jiaotong University, 610031, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qin", 
            "givenName": "Keyun", 
            "id": "sg:person.010770554015.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770554015.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southwest Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "School of Mathematics, Southwest Jiaotong University, 610031, Chengdu, Sichuan, China", 
                "The School of Information Science and Technology, Southwest Jiaotong University, 610031, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Bo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xihua University", 
              "id": "https://www.grid.ac/institutes/grid.412983.5", 
              "name": [
                "School of Computer and Software Engineering, Xihua University, 610039, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pei", 
            "givenName": "Zheng", 
            "id": "sg:person.013366237373.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366237373.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11432-008-0067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005140003", 
              "https://doi.org/10.1007/s11432-008-0067-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2016.01.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009186100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0553-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011098829", 
              "https://doi.org/10.1007/s13042-016-0553-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0553-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011098829", 
              "https://doi.org/10.1007/s13042-016-0553-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijar.2016.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012087303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-015-0485-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013290015", 
              "https://doi.org/10.1007/s13042-015-0485-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-015-0485-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013290015", 
              "https://doi.org/10.1007/s13042-015-0485-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proeng.2014.03.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013444211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-7798-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014658433", 
              "https://doi.org/10.1007/978-94-009-7798-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1015571330", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0586-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016453192", 
              "https://doi.org/10.1007/s13042-016-0586-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0586-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016453192", 
              "https://doi.org/10.1007/s13042-016-0586-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2003.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017491577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b100601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018518453", 
              "https://doi.org/10.1007/b100601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b100601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018518453", 
              "https://doi.org/10.1007/b100601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01001956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020579132", 
              "https://doi.org/10.1007/bf01001956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-013-0214-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021478157", 
              "https://doi.org/10.1007/s13042-013-0214-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.04.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022221411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10798587.2016.1212509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022456804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012435612567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022847772", 
              "https://doi.org/10.1023/a:1012435612567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-011-0034-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023430239", 
              "https://doi.org/10.1007/s13042-011-0034-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.11.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024365251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijar.2013.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029433344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2011.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030270894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14197-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477823", 
              "https://doi.org/10.1007/978-3-642-14197-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14197-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477823", 
              "https://doi.org/10.1007/978-3-642-14197-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0568-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032134092", 
              "https://doi.org/10.1007/s13042-016-0568-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0568-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032134092", 
              "https://doi.org/10.1007/s13042-016-0568-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032547842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02962-2_74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033589748", 
              "https://doi.org/10.1007/978-3-642-02962-2_74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02962-2_74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033589748", 
              "https://doi.org/10.1007/978-3-642-02962-2_74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2011.06.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034395437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2016.03.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034879667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035929197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2009.02.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036118076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/685362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042782609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0576-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042809310", 
              "https://doi.org/10.1007/s13042-016-0576-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0576-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042809310", 
              "https://doi.org/10.1007/s13042-016-0576-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dam.2003.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043878670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046331348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-25929-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047277655", 
              "https://doi.org/10.1007/978-3-540-25929-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-25929-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047277655", 
              "https://doi.org/10.1007/978-3-540-25929-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2011.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047403392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2011.11.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047421668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03081079.2011.634410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049806374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.camwa.2012.03.087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051048476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051438495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0578-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052468380", 
              "https://doi.org/10.1007/s13042-016-0578-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-016-0578-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052468380", 
              "https://doi.org/10.1007/s13042-016-0578-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2008.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053498172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2014.2348012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061579778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tfuzz.2013.2291567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061606788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2008.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tse.2007.70723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061788630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2008.2012168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218488510006465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062977232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1360/122004-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065070312", 
              "https://doi.org/10.1360/122004-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2017.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086109618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2002.1183898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094023048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nafips.2004.1337404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094098775"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-02", 
        "datePublishedReg": "2019-01-02", 
        "description": "The study of concept lattices, property oriented concept lattices and object oriented concept lattices provides complementary conceptual structures, which can be used to search, analyze and extract information from data sets. This paper is devoted to the study of rule acquisition and attribute reduction of formal decision context. Based on object oriented concepts and property oriented concepts, the notions of object oriented decision rules and property oriented decision rules are proposed. By using some equivalence relations on the set of extents of the related conditional concept lattices and decision concept lattices, the rule acquisition methods are presented. The attribute reduction approaches for formal decision context to preserve the object oriented decision rules and property oriented decision rules are put forward by using discernibility attributes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13042-018-00907-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136696", 
            "issn": [
              "1868-8071", 
              "1868-808X"
            ], 
            "name": "International Journal of Machine Learning and Cybernetics", 
            "type": "Periodical"
          }
        ], 
        "name": "Attribute reduction and rule acquisition of formal decision context based on object (property) oriented concept lattices", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2eada9f0ebeb84beff0878496a3b756b349008a55bf8763f72db5ae5a97b3763"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13042-018-00907-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111058702"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13042-018-00907-0", 
          "https://app.dimensions.ai/details/publication/pub.1111058702"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90745_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13042-018-00907-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00907-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00907-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00907-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00907-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      75 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13042-018-00907-0 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N6029b51befff46b6855b18627f8075a5
    4 schema:citation sg:pub.10.1007/978-3-540-25929-9_6
    5 sg:pub.10.1007/978-3-642-02962-2_74
    6 sg:pub.10.1007/978-3-642-14197-3_15
    7 sg:pub.10.1007/978-3-642-59830-2
    8 sg:pub.10.1007/978-94-009-7798-3_15
    9 sg:pub.10.1007/b100601
    10 sg:pub.10.1007/bf01001956
    11 sg:pub.10.1007/s11432-008-0067-4
    12 sg:pub.10.1007/s13042-011-0034-z
    13 sg:pub.10.1007/s13042-013-0214-0
    14 sg:pub.10.1007/s13042-015-0485-8
    15 sg:pub.10.1007/s13042-016-0553-8
    16 sg:pub.10.1007/s13042-016-0568-1
    17 sg:pub.10.1007/s13042-016-0576-1
    18 sg:pub.10.1007/s13042-016-0578-z
    19 sg:pub.10.1007/s13042-016-0586-z
    20 sg:pub.10.1023/a:1012435612567
    21 sg:pub.10.1360/122004-104
    22 https://app.dimensions.ai/details/publication/pub.1015571330
    23 https://doi.org/10.1016/j.camwa.2012.03.087
    24 https://doi.org/10.1016/j.dam.2003.11.002
    25 https://doi.org/10.1016/j.eswa.2009.02.023
    26 https://doi.org/10.1016/j.eswa.2015.04.044
    27 https://doi.org/10.1016/j.ijar.2013.04.011
    28 https://doi.org/10.1016/j.ijar.2016.08.007
    29 https://doi.org/10.1016/j.ins.2003.06.013
    30 https://doi.org/10.1016/j.ins.2011.09.023
    31 https://doi.org/10.1016/j.ins.2011.11.041
    32 https://doi.org/10.1016/j.ins.2016.03.018
    33 https://doi.org/10.1016/j.ins.2017.06.013
    34 https://doi.org/10.1016/j.knosys.2008.02.005
    35 https://doi.org/10.1016/j.knosys.2010.07.001
    36 https://doi.org/10.1016/j.knosys.2011.02.011
    37 https://doi.org/10.1016/j.knosys.2011.06.018
    38 https://doi.org/10.1016/j.knosys.2014.08.020
    39 https://doi.org/10.1016/j.knosys.2014.10.008
    40 https://doi.org/10.1016/j.knosys.2014.11.020
    41 https://doi.org/10.1016/j.knosys.2015.01.004
    42 https://doi.org/10.1016/j.knosys.2016.01.045
    43 https://doi.org/10.1016/j.proeng.2014.03.149
    44 https://doi.org/10.1080/03081079.2011.634410
    45 https://doi.org/10.1080/10798587.2016.1212509
    46 https://doi.org/10.1109/icdm.2002.1183898
    47 https://doi.org/10.1109/nafips.2004.1337404
    48 https://doi.org/10.1109/tcyb.2014.2348012
    49 https://doi.org/10.1109/tfuzz.2013.2291567
    50 https://doi.org/10.1109/tkde.2008.223
    51 https://doi.org/10.1109/tse.2007.70723
    52 https://doi.org/10.1109/tsmcc.2008.2012168
    53 https://doi.org/10.1142/s0218488510006465
    54 https://doi.org/10.1155/2014/685362
    55 schema:datePublished 2019-01-02
    56 schema:datePublishedReg 2019-01-02
    57 schema:description The study of concept lattices, property oriented concept lattices and object oriented concept lattices provides complementary conceptual structures, which can be used to search, analyze and extract information from data sets. This paper is devoted to the study of rule acquisition and attribute reduction of formal decision context. Based on object oriented concepts and property oriented concepts, the notions of object oriented decision rules and property oriented decision rules are proposed. By using some equivalence relations on the set of extents of the related conditional concept lattices and decision concept lattices, the rule acquisition methods are presented. The attribute reduction approaches for formal decision context to preserve the object oriented decision rules and property oriented decision rules are put forward by using discernibility attributes.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf sg:journal.1136696
    62 schema:name Attribute reduction and rule acquisition of formal decision context based on object (property) oriented concept lattices
    63 schema:pagination 1-14
    64 schema:productId N54655657c99e4409a6eff5ec9c98848d
    65 N79bd235684e3488ca8e28fe9e786636c
    66 Nb09f036e8bfa4403923083e7b35af50c
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111058702
    68 https://doi.org/10.1007/s13042-018-00907-0
    69 schema:sdDatePublished 2019-04-11T08:33
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Ncd2a1621b3534551857629c68172710e
    72 schema:url https://link.springer.com/10.1007%2Fs13042-018-00907-0
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N210f7467548e46eaae42026327b4f433 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
    77 schema:familyName Li
    78 schema:givenName Bo
    79 rdf:type schema:Person
    80 N23d1eea73a9343c4b7d6b153ba7ede02 rdf:first N210f7467548e46eaae42026327b4f433
    81 rdf:rest N5f8fa6fd44d34ba586a5858c101953dd
    82 N54655657c99e4409a6eff5ec9c98848d schema:name doi
    83 schema:value 10.1007/s13042-018-00907-0
    84 rdf:type schema:PropertyValue
    85 N5f8fa6fd44d34ba586a5858c101953dd rdf:first sg:person.013366237373.52
    86 rdf:rest rdf:nil
    87 N6029b51befff46b6855b18627f8075a5 rdf:first sg:person.010770554015.43
    88 rdf:rest N23d1eea73a9343c4b7d6b153ba7ede02
    89 N79bd235684e3488ca8e28fe9e786636c schema:name readcube_id
    90 schema:value 2eada9f0ebeb84beff0878496a3b756b349008a55bf8763f72db5ae5a97b3763
    91 rdf:type schema:PropertyValue
    92 Nb09f036e8bfa4403923083e7b35af50c schema:name dimensions_id
    93 schema:value pub.1111058702
    94 rdf:type schema:PropertyValue
    95 Ncd2a1621b3534551857629c68172710e schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Information and Computing Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Information Systems
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1136696 schema:issn 1868-8071
    104 1868-808X
    105 schema:name International Journal of Machine Learning and Cybernetics
    106 rdf:type schema:Periodical
    107 sg:person.010770554015.43 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
    108 schema:familyName Qin
    109 schema:givenName Keyun
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770554015.43
    111 rdf:type schema:Person
    112 sg:person.013366237373.52 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
    113 schema:familyName Pei
    114 schema:givenName Zheng
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366237373.52
    116 rdf:type schema:Person
    117 sg:pub.10.1007/978-3-540-25929-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047277655
    118 https://doi.org/10.1007/978-3-540-25929-9_6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-642-02962-2_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033589748
    121 https://doi.org/10.1007/978-3-642-02962-2_74
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-642-14197-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477823
    124 https://doi.org/10.1007/978-3-642-14197-3_15
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-642-59830-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015571330
    127 https://doi.org/10.1007/978-3-642-59830-2
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-94-009-7798-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658433
    130 https://doi.org/10.1007/978-94-009-7798-3_15
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/b100601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018518453
    133 https://doi.org/10.1007/b100601
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
    136 https://doi.org/10.1007/bf01001956
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11432-008-0067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140003
    139 https://doi.org/10.1007/s11432-008-0067-4
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s13042-011-0034-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023430239
    142 https://doi.org/10.1007/s13042-011-0034-z
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s13042-013-0214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021478157
    145 https://doi.org/10.1007/s13042-013-0214-0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s13042-015-0485-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013290015
    148 https://doi.org/10.1007/s13042-015-0485-8
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s13042-016-0553-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011098829
    151 https://doi.org/10.1007/s13042-016-0553-8
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s13042-016-0568-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032134092
    154 https://doi.org/10.1007/s13042-016-0568-1
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s13042-016-0576-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042809310
    157 https://doi.org/10.1007/s13042-016-0576-1
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s13042-016-0578-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052468380
    160 https://doi.org/10.1007/s13042-016-0578-z
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s13042-016-0586-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016453192
    163 https://doi.org/10.1007/s13042-016-0586-z
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1023/a:1012435612567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022847772
    166 https://doi.org/10.1023/a:1012435612567
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1360/122004-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065070312
    169 https://doi.org/10.1360/122004-104
    170 rdf:type schema:CreativeWork
    171 https://app.dimensions.ai/details/publication/pub.1015571330 schema:CreativeWork
    172 https://doi.org/10.1016/j.camwa.2012.03.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051048476
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.dam.2003.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043878670
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.eswa.2009.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036118076
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.eswa.2015.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022221411
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.ijar.2013.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029433344
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.ijar.2016.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012087303
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.ins.2003.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017491577
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.ins.2011.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047403392
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.ins.2011.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047421668
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.ins.2016.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034879667
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.ins.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086109618
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.knosys.2008.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053498172
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.knosys.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051438495
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.knosys.2011.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030270894
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.knosys.2011.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034395437
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.knosys.2014.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035929197
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.knosys.2014.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046331348
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.knosys.2014.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024365251
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.knosys.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032547842
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.knosys.2016.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186100
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.proeng.2014.03.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013444211
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1080/03081079.2011.634410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049806374
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1080/10798587.2016.1212509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022456804
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1109/icdm.2002.1183898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094023048
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/nafips.2004.1337404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094098775
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/tcyb.2014.2348012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579778
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/tfuzz.2013.2291567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606788
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/tkde.2008.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661900
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/tse.2007.70723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061788630
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/tsmcc.2008.2012168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798108
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1142/s0218488510006465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062977232
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1155/2014/685362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042782609
    235 rdf:type schema:CreativeWork
    236 https://www.grid.ac/institutes/grid.263901.f schema:alternateName Southwest Jiaotong University
    237 schema:name School of Mathematics, Southwest Jiaotong University, 610031, Chengdu, Sichuan, China
    238 The School of Information Science and Technology, Southwest Jiaotong University, 610031, Chengdu, Sichuan, China
    239 rdf:type schema:Organization
    240 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
    241 schema:name School of Computer and Software Engineering, Xihua University, 610039, Chengdu, Sichuan, China
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...