Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Der-Chiang Li, Qi-Shi Shi, Hung-Yu Chen

ABSTRACT

N/A

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-018-00905-2

DOI

http://dx.doi.org/10.1007/s13042-018-00905-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113303400


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Li", 
        "givenName": "Der-Chiang", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Qi-Shi", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Hung-Yu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.asoc.2014.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000466584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(96)00257-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001556307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-013-0226-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004027108", 
          "https://doi.org/10.1007/s13042-013-0226-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004108921", 
          "https://doi.org/10.1007/s00500-016-2064-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004108921", 
          "https://doi.org/10.1007/s00500-016-2064-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-015-5530-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022800041", 
          "https://doi.org/10.1007/s10994-015-5530-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0549-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027110882", 
          "https://doi.org/10.1007/s13042-016-0549-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0549-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027110882", 
          "https://doi.org/10.1007/s13042-016-0549-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/ejpt.v6.25216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033991245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2003.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035884781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2003.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035884781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.08.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037739576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2009.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041355599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046837144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046837144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/6.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2014.2371479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2016.2608347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061663357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1021092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062861414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1884581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069625740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0634-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752337", 
          "https://doi.org/10.1007/s13042-016-0634-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0634-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752337", 
          "https://doi.org/10.1007/s13042-016-0634-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tla.2017.7896343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2017.2653223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085257730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-017-5645-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086121459", 
          "https://doi.org/10.1007/s10994-017-5645-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-017-5645-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086121459", 
          "https://doi.org/10.1007/s10994-017-5645-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2017.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092521559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2018.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103179137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-08", 
    "datePublishedReg": "2019-04-08", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-018-00905-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-018-00905-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113303400"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-018-00905-2", 
      "https://app.dimensions.ai/details/publication/pub.1113303400"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13042-018-00905-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00905-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00905-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00905-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-018-00905-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      18 PREDICATES      45 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-018-00905-2 schema:author Nece4b4f538c64afc938b50d18e534f34
2 schema:citation sg:pub.10.1007/s00500-016-2064-7
3 sg:pub.10.1007/s10994-015-5530-z
4 sg:pub.10.1007/s10994-017-5645-5
5 sg:pub.10.1007/s13042-013-0226-9
6 sg:pub.10.1007/s13042-016-0549-4
7 sg:pub.10.1007/s13042-016-0634-8
8 https://doi.org/10.1016/0165-0114(78)90029-5
9 https://doi.org/10.1016/j.asoc.2014.06.056
10 https://doi.org/10.1016/j.asoc.2018.04.003
11 https://doi.org/10.1016/j.cor.2005.05.019
12 https://doi.org/10.1016/j.dss.2017.10.013
13 https://doi.org/10.1016/j.ijar.2003.06.001
14 https://doi.org/10.1016/j.ins.2014.08.051
15 https://doi.org/10.1016/s0019-9958(65)90241-x
16 https://doi.org/10.1016/s0165-0114(96)00257-6
17 https://doi.org/10.1093/biomet/6.1.1
18 https://doi.org/10.1109/5.726787
19 https://doi.org/10.1109/tcyb.2017.2653223
20 https://doi.org/10.1109/tfuzz.2014.2371479
21 https://doi.org/10.1109/tkde.2009.191
22 https://doi.org/10.1109/tkde.2016.2608347
23 https://doi.org/10.1109/tla.2017.7896343
24 https://doi.org/10.1137/1021092
25 https://doi.org/10.1613/jair.953
26 https://doi.org/10.2307/1884581
27 https://doi.org/10.3402/ejpt.v6.25216
28 schema:datePublished 2019-04-08
29 schema:datePublishedReg 2019-04-08
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf sg:journal.1136696
34 schema:name Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
35 schema:productId N367132a1ce2143dc86c6746108e8b318
36 Ne7005de027664079a929601b39f9ae44
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113303400
38 https://doi.org/10.1007/s13042-018-00905-2
39 schema:sdDatePublished 2019-04-15T08:51
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N5751fc967d6f4bc6b9b1dae7a0de985d
42 schema:url http://link.springer.com/10.1007/s13042-018-00905-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N367132a1ce2143dc86c6746108e8b318 schema:name doi
47 schema:value 10.1007/s13042-018-00905-2
48 rdf:type schema:PropertyValue
49 N3beed59a88444bf78fb52e110ba255a4 schema:familyName Li
50 schema:givenName Der-Chiang
51 rdf:type schema:Person
52 N44bf8d191e034ff885966b9f5a920f9c rdf:first Ncc7f0cc94913475aa400507a36bd6143
53 rdf:rest Nb2705abf2f9e4745b6a1be65a17df273
54 N5751fc967d6f4bc6b9b1dae7a0de985d schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na7baa5a32aa2498bb3bdec3386bae6ab schema:familyName Chen
57 schema:givenName Hung-Yu
58 rdf:type schema:Person
59 Nb2705abf2f9e4745b6a1be65a17df273 rdf:first Na7baa5a32aa2498bb3bdec3386bae6ab
60 rdf:rest rdf:nil
61 Ncc7f0cc94913475aa400507a36bd6143 schema:familyName Shi
62 schema:givenName Qi-Shi
63 rdf:type schema:Person
64 Ne7005de027664079a929601b39f9ae44 schema:name dimensions_id
65 schema:value pub.1113303400
66 rdf:type schema:PropertyValue
67 Nece4b4f538c64afc938b50d18e534f34 rdf:first N3beed59a88444bf78fb52e110ba255a4
68 rdf:rest N44bf8d191e034ff885966b9f5a920f9c
69 sg:journal.1136696 schema:issn 1868-8071
70 1868-808X
71 schema:name International Journal of Machine Learning and Cybernetics
72 rdf:type schema:Periodical
73 sg:pub.10.1007/s00500-016-2064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004108921
74 https://doi.org/10.1007/s00500-016-2064-7
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s10994-015-5530-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022800041
77 https://doi.org/10.1007/s10994-015-5530-z
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s10994-017-5645-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086121459
80 https://doi.org/10.1007/s10994-017-5645-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s13042-013-0226-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004027108
83 https://doi.org/10.1007/s13042-013-0226-9
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s13042-016-0549-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027110882
86 https://doi.org/10.1007/s13042-016-0549-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s13042-016-0634-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752337
89 https://doi.org/10.1007/s13042-016-0634-8
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0165-0114(78)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688140
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.asoc.2014.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466584
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.asoc.2018.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103179137
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cor.2005.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046837144
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.dss.2017.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092521559
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.ijar.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035884781
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ins.2014.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739576
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0165-0114(96)00257-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001556307
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1093/biomet/6.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418162
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/5.726787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179975
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tcyb.2017.2653223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085257730
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tfuzz.2014.2371479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606941
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tkde.2009.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041355599
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tkde.2016.2608347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663357
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tla.2017.7896343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084824775
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/1021092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861414
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2307/1884581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069625740
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3402/ejpt.v6.25216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033991245
130 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...