Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Chao Zhang, Deyu Li, Yanhui Zhai, Yuanhao Yang

ABSTRACT

Person-job fit is a significant issue in the variety of critical business intelligence applications that aims to match suitable professional abilities with job demands for each job seeker, and many studies based on fuzzy sets have been developed on this topic. Among different types of fuzzy sets, hesitant fuzzy sets are usually utilized to handle situations in which experts hesitate among several values to evaluate an alternative. Recently, various hesitant fuzzy decision making methods have been established, but none of them can be used to solve group decision making problems by means of the multigranulation rough set model and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) approach. Thus, to solve problems of hesitant fuzzy information analysis and group decision making for person-job fit, we construct a new multigranulation rough set model, named hesitant fuzzy multigranulation rough sets, through combining hesitant fuzzy sets with multigranulation rough sets. Then in order to express the decision making knowledge base more reasonably, we extend the proposed model from single universe to two universes. At last, by utilizing the TODIM approach, we propose a general decision making method that is applied to person-job fit, and the effectiveness of the proposed decision making method is demonstrated by a case study. More... »

PAGES

717-729

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0753-x

DOI

http://dx.doi.org/10.1007/s13042-017-0753-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099693496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, 030006, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chao", 
        "id": "sg:person.010672604041.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672604041.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, 030006, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Deyu", 
        "id": "sg:person.015426026324.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426026324.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, 030006, Taiyuan, Shanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhai", 
        "givenName": "Yanhui", 
        "id": "sg:person.015263440175.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263440175.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yuanhao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13042-015-0490-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000578242", 
          "https://doi.org/10.1007/s13042-015-0490-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.03.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001858486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2013.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002473071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-169165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003440973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079008935107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003963083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40815-015-0012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005029507", 
          "https://doi.org/10.1007/s40815-015-0012-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2016.10.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005239081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ida-150743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006369903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009023149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010980019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010980019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/292710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012651295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1490-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286933", 
          "https://doi.org/10.1007/s00500-014-1490-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014089962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08959285.2015.1021048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016879423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/exsy.12103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017790388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018886327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019617303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020317941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01001956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020579132", 
          "https://doi.org/10.1007/bf01001956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021307576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023549846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-012-0129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024317760", 
          "https://doi.org/10.1007/s13042-012-0129-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0591-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026383633", 
          "https://doi.org/10.1007/s13042-016-0591-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0591-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026383633", 
          "https://doi.org/10.1007/s13042-016-0591-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-015-2008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547531", 
          "https://doi.org/10.1007/s00500-015-2008-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0541-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027465898", 
          "https://doi.org/10.1007/s13042-016-0541-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-016-0541-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027465898", 
          "https://doi.org/10.1007/s13042-016-0541-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2009.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028166228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028283126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2014.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029154387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029608550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-015-1882-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029802223", 
          "https://doi.org/10.1007/s00500-015-1882-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2010.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031416015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-141516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033276440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033519313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-015-1721-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034665743", 
          "https://doi.org/10.1007/s00500-015-1721-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-151977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035020879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47160-0_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035173364", 
          "https://doi.org/10.1007/978-3-319-47160-0_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035921876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-015-0417-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037722615", 
          "https://doi.org/10.1007/s13042-015-0417-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040680829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2016.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046001449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(97)00077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049188206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-013-1127-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049862468", 
          "https://doi.org/10.1007/s00500-013-1127-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ifs-151851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050550305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msmc.2016.2557479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061421937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2015.2451692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2017.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2017.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2017.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/sym9070126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090852794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fuzzy.2009.5276884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093841905"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Person-job fit is a significant issue in the variety of critical business intelligence applications that aims to match suitable professional abilities with job demands for each job seeker, and many studies based on fuzzy sets have been developed on this topic. Among different types of fuzzy sets, hesitant fuzzy sets are usually utilized to handle situations in which experts hesitate among several values to evaluate an alternative. Recently, various hesitant fuzzy decision making methods have been established, but none of them can be used to solve group decision making problems by means of the multigranulation rough set model and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) approach. Thus, to solve problems of hesitant fuzzy information analysis and group decision making for person-job fit, we construct a new multigranulation rough set model, named hesitant fuzzy multigranulation rough sets, through combining hesitant fuzzy sets with multigranulation rough sets. Then in order to express the decision making knowledge base more reasonably, we extend the proposed model from single universe to two universes. At last, by utilizing the TODIM approach, we propose a general decision making method that is applied to person-job fit, and the effectiveness of the proposed decision making method is demonstrated by a case study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0753-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7191569", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7193900", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit", 
    "pagination": "717-729", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b98f189919e6c3bf16253450299161198e0c356722c816fe64b5e12dc2a3f84"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0753-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099693496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0753-x", 
      "https://app.dimensions.ai/details/publication/pub.1099693496"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72868_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-017-0753-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0753-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0753-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0753-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0753-x'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0753-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N51fb403aafaa4bf7bfdc727588383c51
4 schema:citation sg:pub.10.1007/978-3-319-47160-0_28
5 sg:pub.10.1007/bf01001956
6 sg:pub.10.1007/s00500-013-1127-2
7 sg:pub.10.1007/s00500-014-1490-7
8 sg:pub.10.1007/s00500-015-1721-6
9 sg:pub.10.1007/s00500-015-1882-3
10 sg:pub.10.1007/s00500-015-2008-7
11 sg:pub.10.1007/s13042-012-0129-1
12 sg:pub.10.1007/s13042-015-0417-7
13 sg:pub.10.1007/s13042-015-0490-y
14 sg:pub.10.1007/s13042-016-0541-z
15 sg:pub.10.1007/s13042-016-0591-2
16 sg:pub.10.1007/s40815-015-0012-9
17 https://doi.org/10.1002/int.20418
18 https://doi.org/10.1002/int.21600
19 https://doi.org/10.1002/int.21654
20 https://doi.org/10.1002/int.21811
21 https://doi.org/10.1016/j.apm.2013.02.008
22 https://doi.org/10.1016/j.apm.2016.10.048
23 https://doi.org/10.1016/j.fss.2013.08.017
24 https://doi.org/10.1016/j.fss.2014.10.010
25 https://doi.org/10.1016/j.ijar.2010.09.002
26 https://doi.org/10.1016/j.ijar.2016.11.001
27 https://doi.org/10.1016/j.ins.2009.11.023
28 https://doi.org/10.1016/j.ins.2013.12.014
29 https://doi.org/10.1016/j.ins.2015.03.061
30 https://doi.org/10.1016/j.ins.2016.01.037
31 https://doi.org/10.1016/j.ins.2016.04.019
32 https://doi.org/10.1016/j.ins.2016.08.030
33 https://doi.org/10.1016/j.knosys.2015.10.007
34 https://doi.org/10.1016/j.knosys.2016.10.010
35 https://doi.org/10.1016/j.knosys.2017.01.036
36 https://doi.org/10.1016/s0019-9958(65)90241-x
37 https://doi.org/10.1016/s0165-0114(97)00077-8
38 https://doi.org/10.1080/03081079008935107
39 https://doi.org/10.1080/08959285.2015.1021048
40 https://doi.org/10.1109/fuzzy.2009.5276884
41 https://doi.org/10.1109/msmc.2016.2557479
42 https://doi.org/10.1109/tfuzz.2015.2451692
43 https://doi.org/10.1111/exsy.12103
44 https://doi.org/10.1155/2015/292710
45 https://doi.org/10.3233/ida-150743
46 https://doi.org/10.3233/ifs-141516
47 https://doi.org/10.3233/ifs-151729
48 https://doi.org/10.3233/ifs-151826
49 https://doi.org/10.3233/ifs-151851
50 https://doi.org/10.3233/jifs-151977
51 https://doi.org/10.3233/jifs-169165
52 https://doi.org/10.3390/sym9070126
53 schema:datePublished 2019-04
54 schema:datePublishedReg 2019-04-01
55 schema:description Person-job fit is a significant issue in the variety of critical business intelligence applications that aims to match suitable professional abilities with job demands for each job seeker, and many studies based on fuzzy sets have been developed on this topic. Among different types of fuzzy sets, hesitant fuzzy sets are usually utilized to handle situations in which experts hesitate among several values to evaluate an alternative. Recently, various hesitant fuzzy decision making methods have been established, but none of them can be used to solve group decision making problems by means of the multigranulation rough set model and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) approach. Thus, to solve problems of hesitant fuzzy information analysis and group decision making for person-job fit, we construct a new multigranulation rough set model, named hesitant fuzzy multigranulation rough sets, through combining hesitant fuzzy sets with multigranulation rough sets. Then in order to express the decision making knowledge base more reasonably, we extend the proposed model from single universe to two universes. At last, by utilizing the TODIM approach, we propose a general decision making method that is applied to person-job fit, and the effectiveness of the proposed decision making method is demonstrated by a case study.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf Nea6067963d464739a2794fc10a95f467
60 Nfd520a02decd4d16958feb9228d8dbbb
61 sg:journal.1136696
62 schema:name Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit
63 schema:pagination 717-729
64 schema:productId N2c433c6fea6b45f58a183dc56b4c0744
65 Nd589883f9dc444719444151ffe20b534
66 Nffc9f85b2b8747679cd3b2a63dfd9c1c
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693496
68 https://doi.org/10.1007/s13042-017-0753-x
69 schema:sdDatePublished 2019-04-11T12:55
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N1a4152fe997442269f565f5919aefbf2
72 schema:url https://link.springer.com/10.1007%2Fs13042-017-0753-x
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0cbb9dc492414671b5fc93f8f8354352 rdf:first Nf6e530599adf411587a7c06fc46ca9d6
77 rdf:rest rdf:nil
78 N1a4152fe997442269f565f5919aefbf2 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N2b3b9cc3cb0d483bae9600918b92b19e rdf:first sg:person.015426026324.38
81 rdf:rest N5944221972e94ea5a457b62b913fbd92
82 N2c433c6fea6b45f58a183dc56b4c0744 schema:name doi
83 schema:value 10.1007/s13042-017-0753-x
84 rdf:type schema:PropertyValue
85 N51fb403aafaa4bf7bfdc727588383c51 rdf:first sg:person.010672604041.01
86 rdf:rest N2b3b9cc3cb0d483bae9600918b92b19e
87 N5944221972e94ea5a457b62b913fbd92 rdf:first sg:person.015263440175.58
88 rdf:rest N0cbb9dc492414671b5fc93f8f8354352
89 Na401b0d0a9b341cc9ce27fc4a31ddbbf schema:name Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Brisbane, Australia
90 rdf:type schema:Organization
91 Nd589883f9dc444719444151ffe20b534 schema:name readcube_id
92 schema:value 2b98f189919e6c3bf16253450299161198e0c356722c816fe64b5e12dc2a3f84
93 rdf:type schema:PropertyValue
94 Nea6067963d464739a2794fc10a95f467 schema:volumeNumber 10
95 rdf:type schema:PublicationVolume
96 Nf6e530599adf411587a7c06fc46ca9d6 schema:affiliation Na401b0d0a9b341cc9ce27fc4a31ddbbf
97 schema:familyName Yang
98 schema:givenName Yuanhao
99 rdf:type schema:Person
100 Nfd520a02decd4d16958feb9228d8dbbb schema:issueNumber 4
101 rdf:type schema:PublicationIssue
102 Nffc9f85b2b8747679cd3b2a63dfd9c1c schema:name dimensions_id
103 schema:value pub.1099693496
104 rdf:type schema:PropertyValue
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:grant.7191569 http://pending.schema.org/fundedItem sg:pub.10.1007/s13042-017-0753-x
112 rdf:type schema:MonetaryGrant
113 sg:grant.7193900 http://pending.schema.org/fundedItem sg:pub.10.1007/s13042-017-0753-x
114 rdf:type schema:MonetaryGrant
115 sg:journal.1136696 schema:issn 1868-8071
116 1868-808X
117 schema:name International Journal of Machine Learning and Cybernetics
118 rdf:type schema:Periodical
119 sg:person.010672604041.01 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
120 schema:familyName Zhang
121 schema:givenName Chao
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672604041.01
123 rdf:type schema:Person
124 sg:person.015263440175.58 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
125 schema:familyName Zhai
126 schema:givenName Yanhui
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263440175.58
128 rdf:type schema:Person
129 sg:person.015426026324.38 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
130 schema:familyName Li
131 schema:givenName Deyu
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426026324.38
133 rdf:type schema:Person
134 sg:pub.10.1007/978-3-319-47160-0_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035173364
135 https://doi.org/10.1007/978-3-319-47160-0_28
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
138 https://doi.org/10.1007/bf01001956
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00500-013-1127-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049862468
141 https://doi.org/10.1007/s00500-013-1127-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00500-014-1490-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286933
144 https://doi.org/10.1007/s00500-014-1490-7
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00500-015-1721-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034665743
147 https://doi.org/10.1007/s00500-015-1721-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00500-015-1882-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029802223
150 https://doi.org/10.1007/s00500-015-1882-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00500-015-2008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026547531
153 https://doi.org/10.1007/s00500-015-2008-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s13042-012-0129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024317760
156 https://doi.org/10.1007/s13042-012-0129-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s13042-015-0417-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037722615
159 https://doi.org/10.1007/s13042-015-0417-7
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s13042-015-0490-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000578242
162 https://doi.org/10.1007/s13042-015-0490-y
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s13042-016-0541-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027465898
165 https://doi.org/10.1007/s13042-016-0541-z
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s13042-016-0591-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026383633
168 https://doi.org/10.1007/s13042-016-0591-2
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s40815-015-0012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005029507
171 https://doi.org/10.1007/s40815-015-0012-9
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/int.20418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010980019
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/int.21600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009023149
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/int.21654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014089962
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/int.21811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040680829
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.apm.2013.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018886327
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.apm.2016.10.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005239081
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.fss.2013.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002473071
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.fss.2014.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029154387
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ijar.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031416015
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.ijar.2016.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046001449
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.ins.2009.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028166228
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ins.2013.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029608550
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ins.2015.03.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001858486
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ins.2016.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020317941
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ins.2016.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921876
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ins.2016.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023549846
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.knosys.2015.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019617303
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.knosys.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033519313
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.knosys.2017.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083743780
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0165-0114(97)00077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049188206
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/03081079008935107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003963083
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/08959285.2015.1021048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879423
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/fuzzy.2009.5276884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093841905
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/msmc.2016.2557479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061421937
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tfuzz.2015.2451692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607019
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/exsy.12103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017790388
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1155/2015/292710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012651295
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3233/ida-150743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006369903
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3233/ifs-141516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033276440
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3233/ifs-151729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028283126
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3233/ifs-151826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021307576
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3233/ifs-151851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550305
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3233/jifs-151977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035020879
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3233/jifs-169165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003440973
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3390/sym9070126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090852794
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
246 schema:name Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, 030006, Taiyuan, Shanxi, China
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...