A term correlation based semi-supervised microblog clustering with dual constraints View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Huifang Ma, Di Zhang, Meihuizi Jia, Xianghong Lin

ABSTRACT

Microblog clustering is very important in many web applications. However, microblogs do not provide sufficient word occurrences. Meanwhile the limited length of these messages prevents traditional text clustering approaches from being employed to their full potential. To address this problem, in this paper, we propose a novel semi-supervised learning scheme fully exploring the semantic information to compensate for the limited message length. The key idea is to explore term correlation data, which well captures the semantic information for term weighting and provides greater context for microblogs. We then formulate microblog clustering problem as a semi-supervised non-negative matrix factorization co-clustering framework, which takes advantage of both prior domain knowledge of data points (microblogs) in the form of pair-wise constraints and category knowledge of features (terms). Our approach not only greatly reduces the labor-intensive labeling process, but also deeply exploits hidden information from microblog itself. Extensive experiments are conducted on two real-world microblog datasets. The results demonstrate the effectiveness of the proposed approach which produces promising performance as compared to state-of-the-art methods. More... »

PAGES

679-692

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0750-0

DOI

http://dx.doi.org/10.1007/s13042-017-0750-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092936560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute Of Computing Technology", 
          "id": "https://www.grid.ac/institutes/grid.424936.e", 
          "name": [
            "College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China", 
            "The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100085, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Huifang", 
        "id": "sg:person.015644007471.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015644007471.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Normal University", 
          "id": "https://www.grid.ac/institutes/grid.412260.3", 
          "name": [
            "College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Di", 
        "id": "sg:person.014755236130.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755236130.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Normal University", 
          "id": "https://www.grid.ac/institutes/grid.412260.3", 
          "name": [
            "College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Meihuizi", 
        "id": "sg:person.07736316671.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736316671.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Normal University", 
          "id": "https://www.grid.ac/institutes/grid.412260.3", 
          "name": [
            "College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Xianghong", 
        "id": "sg:person.012724220671.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724220671.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00521-014-1628-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001019166", 
          "https://doi.org/10.1007/s00521-014-1628-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002795037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004081124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005082923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.05.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012128382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20161-5_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531775", 
          "https://doi.org/10.1007/978-3-642-20161-5_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20161-5_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531775", 
          "https://doi.org/10.1007/978-3-642-20161-5_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014109038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2484028.2484166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014502103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.6.1528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018777023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2488388.2488514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018885276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019569422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.12.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021600115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2013.09.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021710575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-3223-4_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027834198", 
          "https://doi.org/10.1007/978-1-4614-3223-4_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2008.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029311333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2348283.2348511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034573276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1015330.1015391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036771206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038462159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11704-016-6041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190880", 
          "https://doi.org/10.1007/s11704-016-6041-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11704-016-6041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190880", 
          "https://doi.org/10.1007/s11704-016-6041-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2013.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043834348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835449.1835643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044013281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-012-0560-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046063869", 
          "https://doi.org/10.1007/s10115-012-0560-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11116-2_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048549835", 
          "https://doi.org/10.1007/978-3-319-11116-2_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0389-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049208976", 
          "https://doi.org/10.1007/s10115-011-0389-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2009.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2015.2503753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061663182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972832.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/snpd.2012.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094010686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2011.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094060910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2013.6706853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094445050"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Microblog clustering is very important in many web applications. However, microblogs do not provide sufficient word occurrences. Meanwhile the limited length of these messages prevents traditional text clustering approaches from being employed to their full potential. To address this problem, in this paper, we propose a novel semi-supervised learning scheme fully exploring the semantic information to compensate for the limited message length. The key idea is to explore term correlation data, which well captures the semantic information for term weighting and provides greater context for microblogs. We then formulate microblog clustering problem as a semi-supervised non-negative matrix factorization co-clustering framework, which takes advantage of both prior domain knowledge of data points (microblogs) in the form of pair-wise constraints and category knowledge of features (terms). Our approach not only greatly reduces the labor-intensive labeling process, but also deeply exploits hidden information from microblog itself. Extensive experiments are conducted on two real-world microblog datasets. The results demonstrate the effectiveness of the proposed approach which produces promising performance as compared to state-of-the-art methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0750-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "A term correlation based semi-supervised microblog clustering with dual constraints", 
    "pagination": "679-692", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2cff15fe2190fcc6c7ffae77f622b2d4dabc81defbc916479e9630ea731a2515"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0750-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092936560"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0750-0", 
      "https://app.dimensions.ai/details/publication/pub.1092936560"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72866_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-017-0750-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0750-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0750-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0750-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0750-0'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0750-0 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N58e0e70a73f44882872edac0d2c67d4a
4 schema:citation sg:pub.10.1007/978-1-4614-3223-4_12
5 sg:pub.10.1007/978-3-319-11116-2_46
6 sg:pub.10.1007/978-3-642-20161-5_34
7 sg:pub.10.1007/s00521-014-1628-7
8 sg:pub.10.1007/s10115-011-0389-1
9 sg:pub.10.1007/s10115-012-0560-3
10 sg:pub.10.1007/s11704-016-6041-1
11 https://doi.org/10.1016/j.ins.2016.12.047
12 https://doi.org/10.1016/j.ipm.2008.03.001
13 https://doi.org/10.1016/j.neucom.2014.05.094
14 https://doi.org/10.1016/j.neunet.2016.12.008
15 https://doi.org/10.1016/j.patcog.2015.08.015
16 https://doi.org/10.1016/j.patrec.2013.02.003
17 https://doi.org/10.1016/j.procs.2013.09.083
18 https://doi.org/10.1109/icdmw.2011.171
19 https://doi.org/10.1109/ijcnn.2013.6706853
20 https://doi.org/10.1109/snpd.2012.48
21 https://doi.org/10.1109/tkde.2009.169
22 https://doi.org/10.1109/tkde.2015.2503753
23 https://doi.org/10.1137/1.9781611972832.83
24 https://doi.org/10.1145/1014052.1014111
25 https://doi.org/10.1145/1015330.1015391
26 https://doi.org/10.1145/1557019.1557063
27 https://doi.org/10.1145/1835449.1835643
28 https://doi.org/10.1145/2063576.2063992
29 https://doi.org/10.1145/2348283.2348511
30 https://doi.org/10.1145/2484028.2484166
31 https://doi.org/10.1145/2488388.2488514
32 https://doi.org/10.1145/956750.956764
33 https://doi.org/10.1162/neco.2007.19.6.1528
34 schema:datePublished 2019-04
35 schema:datePublishedReg 2019-04-01
36 schema:description Microblog clustering is very important in many web applications. However, microblogs do not provide sufficient word occurrences. Meanwhile the limited length of these messages prevents traditional text clustering approaches from being employed to their full potential. To address this problem, in this paper, we propose a novel semi-supervised learning scheme fully exploring the semantic information to compensate for the limited message length. The key idea is to explore term correlation data, which well captures the semantic information for term weighting and provides greater context for microblogs. We then formulate microblog clustering problem as a semi-supervised non-negative matrix factorization co-clustering framework, which takes advantage of both prior domain knowledge of data points (microblogs) in the form of pair-wise constraints and category knowledge of features (terms). Our approach not only greatly reduces the labor-intensive labeling process, but also deeply exploits hidden information from microblog itself. Extensive experiments are conducted on two real-world microblog datasets. The results demonstrate the effectiveness of the proposed approach which produces promising performance as compared to state-of-the-art methods.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N39d73830b20043f08efd510bb7e9b370
41 N3febc97596724807be06f422c6fad7e3
42 sg:journal.1136696
43 schema:name A term correlation based semi-supervised microblog clustering with dual constraints
44 schema:pagination 679-692
45 schema:productId N5880f18d39b84fb2a76c9b60ba53b9c9
46 N8eba4fb268594e5495a75447870c7f57
47 Ncf3caa4104b04d13ae3871b45adeb58f
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092936560
49 https://doi.org/10.1007/s13042-017-0750-0
50 schema:sdDatePublished 2019-04-11T12:54
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N12bff5d812d043189e7c0d9063c65581
53 schema:url https://link.springer.com/10.1007%2Fs13042-017-0750-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N12bff5d812d043189e7c0d9063c65581 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N39d73830b20043f08efd510bb7e9b370 schema:volumeNumber 10
60 rdf:type schema:PublicationVolume
61 N3febc97596724807be06f422c6fad7e3 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 N4ed2ff2fd9284cb6a4fa4194d26c058a rdf:first sg:person.012724220671.79
64 rdf:rest rdf:nil
65 N5880f18d39b84fb2a76c9b60ba53b9c9 schema:name readcube_id
66 schema:value 2cff15fe2190fcc6c7ffae77f622b2d4dabc81defbc916479e9630ea731a2515
67 rdf:type schema:PropertyValue
68 N58e0e70a73f44882872edac0d2c67d4a rdf:first sg:person.015644007471.63
69 rdf:rest Nbd4a82f73b724d65a38b1d0ad65ec2fd
70 N8eba4fb268594e5495a75447870c7f57 schema:name dimensions_id
71 schema:value pub.1092936560
72 rdf:type schema:PropertyValue
73 Nbd4a82f73b724d65a38b1d0ad65ec2fd rdf:first sg:person.014755236130.69
74 rdf:rest Ndb33120e988d4a2e8e7372637ae7d779
75 Ncf3caa4104b04d13ae3871b45adeb58f schema:name doi
76 schema:value 10.1007/s13042-017-0750-0
77 rdf:type schema:PropertyValue
78 Ndb33120e988d4a2e8e7372637ae7d779 rdf:first sg:person.07736316671.87
79 rdf:rest N4ed2ff2fd9284cb6a4fa4194d26c058a
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information Systems
85 rdf:type schema:DefinedTerm
86 sg:journal.1136696 schema:issn 1868-8071
87 1868-808X
88 schema:name International Journal of Machine Learning and Cybernetics
89 rdf:type schema:Periodical
90 sg:person.012724220671.79 schema:affiliation https://www.grid.ac/institutes/grid.412260.3
91 schema:familyName Lin
92 schema:givenName Xianghong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724220671.79
94 rdf:type schema:Person
95 sg:person.014755236130.69 schema:affiliation https://www.grid.ac/institutes/grid.412260.3
96 schema:familyName Zhang
97 schema:givenName Di
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755236130.69
99 rdf:type schema:Person
100 sg:person.015644007471.63 schema:affiliation https://www.grid.ac/institutes/grid.424936.e
101 schema:familyName Ma
102 schema:givenName Huifang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015644007471.63
104 rdf:type schema:Person
105 sg:person.07736316671.87 schema:affiliation https://www.grid.ac/institutes/grid.412260.3
106 schema:familyName Jia
107 schema:givenName Meihuizi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736316671.87
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4614-3223-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027834198
111 https://doi.org/10.1007/978-1-4614-3223-4_12
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-11116-2_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048549835
114 https://doi.org/10.1007/978-3-319-11116-2_46
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-20161-5_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012531775
117 https://doi.org/10.1007/978-3-642-20161-5_34
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00521-014-1628-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001019166
120 https://doi.org/10.1007/s00521-014-1628-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10115-011-0389-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049208976
123 https://doi.org/10.1007/s10115-011-0389-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10115-012-0560-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046063869
126 https://doi.org/10.1007/s10115-012-0560-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11704-016-6041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040190880
129 https://doi.org/10.1007/s11704-016-6041-1
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ins.2016.12.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021600115
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ipm.2008.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029311333
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.neucom.2014.05.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012128382
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.neunet.2016.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019569422
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.patcog.2015.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109038
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.patrec.2013.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043834348
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.procs.2013.09.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021710575
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icdmw.2011.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094060910
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/ijcnn.2013.6706853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094445050
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/snpd.2012.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094010686
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tkde.2009.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662022
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tkde.2015.2503753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663182
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1137/1.9781611972832.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800779
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/1014052.1014111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038462159
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/1015330.1015391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036771206
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/1557019.1557063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082923
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/1835449.1835643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044013281
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/2063576.2063992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004081124
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/2348283.2348511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034573276
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/2484028.2484166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014502103
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/2488388.2488514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018885276
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1145/956750.956764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002795037
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1162/neco.2007.19.6.1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018777023
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.412260.3 schema:alternateName Northwest Normal University
178 schema:name College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.424936.e schema:alternateName Institute Of Computing Technology
181 schema:name College of Computer science and engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China
182 The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100085, Beijing, China
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...