An efficient and fast algorithm for community detection based on node role analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xuegang Hu, Wei He, Lei Li, Yaojin Lin, Huizong Li, Jianhan Pan

ABSTRACT

The community structure of networks provides a comprehensive insight into their organizational structures and functional behaviors. Label propagation is one of the most commonly adopted community detection algorithm with nearly linear time complexity. It ignores the difference between nodes when breaking ties, leading to poor stability and the occurrence of the monster community. We note that different community-oriented node roles impact the label propagation in different ways. In this paper, we propose a role-based label propagation algorithm (roLPA), in which the heuristics with regard to community-oriented node role were used. We have evaluated the proposed algorithm on both real and artificial networks. The result shows that roLPA outperforms other state-of-the-art community detection algorithms. More... »

PAGES

641-654

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0745-x

DOI

http://dx.doi.org/10.1007/s13042-017-0745-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092818220


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Computer and Information, Hefei University of Technology, 230009, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xuegang", 
        "id": "sg:person.010636267152.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636267152.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Computer and Information, Hefei University of Technology, 230009, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Wei", 
        "id": "sg:person.011304600642.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304600642.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Computer and Information, Hefei University of Technology, 230009, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lei", 
        "id": "sg:person.011662526321.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662526321.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhangzhou Normal University", 
          "id": "https://www.grid.ac/institutes/grid.413066.6", 
          "name": [
            "School of Computer Science, Minnan Normal University, 363000, Zhangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yaojin", 
        "id": "sg:person.010365607520.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365607520.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440648.a", 
          "name": [
            "School of Economics and Management, Anhui University of Science and Technology, 232001, Huainan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Huizong", 
        "id": "sg:person.011670715007.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670715007.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411857.e", 
          "name": [
            "School of Computer Science and Technology, Jiangsu Normal University, 221116, Xuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Jianhan", 
        "id": "sg:person.011236465442.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236465442.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0027418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001630119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.066107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006850008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.066107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006850008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15427951.2009.10129177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706851105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017158516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2011-10979-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017207238", 
          "https://doi.org/10.1140/epjb/e2011-10979-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.2.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018280471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2015/03/p03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021181255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2433396.2433461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023245218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00265-003-0651-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025345051", 
          "https://doi.org/10.1007/s00265-003-0651-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2008.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026392024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0103733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026546168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2009.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605965104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028061681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.026129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034758930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.026129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034758930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0097021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034897071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1348549.1348553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037586383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-013-0693-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041186630", 
          "https://doi.org/10.1007/s10115-013-0693-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.036103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041853350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.036103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041853350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15105-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046786569", 
          "https://doi.org/10.1007/978-3-642-15105-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15105-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046786569", 
          "https://doi.org/10.1007/978-3-642-15105-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.09.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052443411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/421787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058712288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/jar.33.4.3629752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058909178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cit.2012.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095236075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700813"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The community structure of networks provides a comprehensive insight into their organizational structures and functional behaviors. Label propagation is one of the most commonly adopted community detection algorithm with nearly linear time complexity. It ignores the difference between nodes when breaking ties, leading to poor stability and the occurrence of the monster community. We note that different community-oriented node roles impact the label propagation in different ways. In this paper, we propose a role-based label propagation algorithm (roLPA), in which the heuristics with regard to community-oriented node role were used. We have evaluated the proposed algorithm on both real and artificial networks. The result shows that roLPA outperforms other state-of-the-art community detection algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0745-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7199421", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "An efficient and fast algorithm for community detection based on node role analysis", 
    "pagination": "641-654", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ab883b92830def1cbc74ec6d372c3d8429ee46c3ca081c0349c4dfe2a3e6b34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0745-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092818220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0745-x", 
      "https://app.dimensions.ai/details/publication/pub.1092818220"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72836_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-017-0745-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0745-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0745-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0745-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0745-x'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0745-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N354ad7befc1e4844977967a949f57d69
4 schema:citation sg:pub.10.1007/978-3-642-15105-7_5
5 sg:pub.10.1007/s00265-003-0651-y
6 sg:pub.10.1007/s10115-013-0693-z
7 sg:pub.10.1038/30918
8 sg:pub.10.1140/epjb/e2011-10979-2
9 https://doi.org/10.1016/j.physa.2007.09.039
10 https://doi.org/10.1016/j.physa.2008.04.024
11 https://doi.org/10.1016/j.physa.2009.12.019
12 https://doi.org/10.1016/j.physrep.2009.11.002
13 https://doi.org/10.1017/cbo9780511815478
14 https://doi.org/10.1073/pnas.0605965104
15 https://doi.org/10.1073/pnas.0706851105
16 https://doi.org/10.1073/pnas.122653799
17 https://doi.org/10.1073/pnas.98.2.404
18 https://doi.org/10.1080/15427951.2009.10129177
19 https://doi.org/10.1086/421787
20 https://doi.org/10.1086/jar.33.4.3629752
21 https://doi.org/10.1088/1742-5468/2005/09/p09008
22 https://doi.org/10.1088/1742-5468/2015/03/p03009
23 https://doi.org/10.1103/physreve.69.026113
24 https://doi.org/10.1103/physreve.74.036104
25 https://doi.org/10.1103/physreve.76.036106
26 https://doi.org/10.1103/physreve.78.046110
27 https://doi.org/10.1103/physreve.79.066107
28 https://doi.org/10.1103/physreve.80.026129
29 https://doi.org/10.1103/physreve.83.036103
30 https://doi.org/10.1109/cit.2012.30
31 https://doi.org/10.1145/1348549.1348553
32 https://doi.org/10.1145/2433396.2433461
33 https://doi.org/10.1371/journal.pone.0027418
34 https://doi.org/10.1371/journal.pone.0097021
35 https://doi.org/10.1371/journal.pone.0103733
36 schema:datePublished 2019-04
37 schema:datePublishedReg 2019-04-01
38 schema:description The community structure of networks provides a comprehensive insight into their organizational structures and functional behaviors. Label propagation is one of the most commonly adopted community detection algorithm with nearly linear time complexity. It ignores the difference between nodes when breaking ties, leading to poor stability and the occurrence of the monster community. We note that different community-oriented node roles impact the label propagation in different ways. In this paper, we propose a role-based label propagation algorithm (roLPA), in which the heuristics with regard to community-oriented node role were used. We have evaluated the proposed algorithm on both real and artificial networks. The result shows that roLPA outperforms other state-of-the-art community detection algorithms.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N7d812d055c404620a1270c984f4c1c50
43 N8830af23907c4b39a41d841fa6e06ada
44 sg:journal.1136696
45 schema:name An efficient and fast algorithm for community detection based on node role analysis
46 schema:pagination 641-654
47 schema:productId N30180517e6e44e8f938a50060884b887
48 N4a19766aedfc45689367c0686d7fc7cd
49 N4e24edd07488497784ce6d73e17d1997
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092818220
51 https://doi.org/10.1007/s13042-017-0745-x
52 schema:sdDatePublished 2019-04-11T12:52
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N204f5ca8d91f455797c9b1c1ff3d0947
55 schema:url https://link.springer.com/10.1007%2Fs13042-017-0745-x
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N204f5ca8d91f455797c9b1c1ff3d0947 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N279d20d5275b4388a0533cfcf0aa07a3 rdf:first sg:person.010365607520.54
62 rdf:rest Naf79e08b7df64885950766d5a7125da0
63 N30180517e6e44e8f938a50060884b887 schema:name readcube_id
64 schema:value 9ab883b92830def1cbc74ec6d372c3d8429ee46c3ca081c0349c4dfe2a3e6b34
65 rdf:type schema:PropertyValue
66 N354ad7befc1e4844977967a949f57d69 rdf:first sg:person.010636267152.30
67 rdf:rest N800f0f7873b149808838e3d8b485e13a
68 N4a19766aedfc45689367c0686d7fc7cd schema:name doi
69 schema:value 10.1007/s13042-017-0745-x
70 rdf:type schema:PropertyValue
71 N4e24edd07488497784ce6d73e17d1997 schema:name dimensions_id
72 schema:value pub.1092818220
73 rdf:type schema:PropertyValue
74 N7d812d055c404620a1270c984f4c1c50 schema:volumeNumber 10
75 rdf:type schema:PublicationVolume
76 N800f0f7873b149808838e3d8b485e13a rdf:first sg:person.011304600642.08
77 rdf:rest N864500af7b724532a794f1e43a0270da
78 N864500af7b724532a794f1e43a0270da rdf:first sg:person.011662526321.00
79 rdf:rest N279d20d5275b4388a0533cfcf0aa07a3
80 N8830af23907c4b39a41d841fa6e06ada schema:issueNumber 4
81 rdf:type schema:PublicationIssue
82 N8ce0b686a82944df91af4e331d703ad2 rdf:first sg:person.011236465442.49
83 rdf:rest rdf:nil
84 Naf79e08b7df64885950766d5a7125da0 rdf:first sg:person.011670715007.39
85 rdf:rest N8ce0b686a82944df91af4e331d703ad2
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:grant.7199421 http://pending.schema.org/fundedItem sg:pub.10.1007/s13042-017-0745-x
93 rdf:type schema:MonetaryGrant
94 sg:journal.1136696 schema:issn 1868-8071
95 1868-808X
96 schema:name International Journal of Machine Learning and Cybernetics
97 rdf:type schema:Periodical
98 sg:person.010365607520.54 schema:affiliation https://www.grid.ac/institutes/grid.413066.6
99 schema:familyName Lin
100 schema:givenName Yaojin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365607520.54
102 rdf:type schema:Person
103 sg:person.010636267152.30 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
104 schema:familyName Hu
105 schema:givenName Xuegang
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636267152.30
107 rdf:type schema:Person
108 sg:person.011236465442.49 schema:affiliation https://www.grid.ac/institutes/grid.411857.e
109 schema:familyName Pan
110 schema:givenName Jianhan
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236465442.49
112 rdf:type schema:Person
113 sg:person.011304600642.08 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
114 schema:familyName He
115 schema:givenName Wei
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304600642.08
117 rdf:type schema:Person
118 sg:person.011662526321.00 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
119 schema:familyName Li
120 schema:givenName Lei
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662526321.00
122 rdf:type schema:Person
123 sg:person.011670715007.39 schema:affiliation https://www.grid.ac/institutes/grid.440648.a
124 schema:familyName Li
125 schema:givenName Huizong
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011670715007.39
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-642-15105-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046786569
129 https://doi.org/10.1007/978-3-642-15105-7_5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00265-003-0651-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345051
132 https://doi.org/10.1007/s00265-003-0651-y
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10115-013-0693-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041186630
135 https://doi.org/10.1007/s10115-013-0693-z
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
138 https://doi.org/10.1038/30918
139 rdf:type schema:CreativeWork
140 sg:pub.10.1140/epjb/e2011-10979-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017207238
141 https://doi.org/10.1140/epjb/e2011-10979-2
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.physa.2007.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052443411
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.physa.2008.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026392024
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.physa.2009.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366715
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/cbo9780511815478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700813
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.0706851105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158516
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.98.2.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018280471
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/15427951.2009.10129177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138573
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1086/421787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058712288
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1086/jar.33.4.3629752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058909178
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1742-5468/2005/09/p09008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878564
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/1742-5468/2015/03/p03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021181255
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.74.036104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120999
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.76.036106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029327122
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.78.046110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016699541
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.79.066107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006850008
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.80.026129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034758930
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreve.83.036103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041853350
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/cit.2012.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095236075
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1348549.1348553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037586383
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/2433396.2433461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245218
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.pone.0027418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001630119
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1371/journal.pone.0097021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034897071
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0103733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026546168
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
198 schema:name School of Computer and Information, Hefei University of Technology, 230009, Hefei, China
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.411857.e schema:alternateName Jiangsu Normal University
201 schema:name School of Computer Science and Technology, Jiangsu Normal University, 221116, Xuzhou, China
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.413066.6 schema:alternateName Zhangzhou Normal University
204 schema:name School of Computer Science, Minnan Normal University, 363000, Zhangzhou, China
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.440648.a schema:alternateName Anhui University of Science and Technology
207 schema:name School of Economics and Management, Anhui University of Science and Technology, 232001, Huainan, China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...