Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Chao Yang, Lihong Huang

ABSTRACT

This paper considers the exponential synchronization for a class of coupled time-delayed neural networks with discontinuous activations. Based on differential inclusions theory, set-valued analysis, and by constructing suitable coupling function and Lyapunov function, designing a novel discontinuous controller, when the controller and activation functions are both discontinuous, the global exponential synchronization for the coupled neural networks can be achieved. Especially, we consider a new Lyapunov–Krasovskii functional which is time-dependent, and the results in this paper are applicable to the undirected weighted networks. Finally, to demonstrate the correctness of our results, a numerical example is provided to illustrate it. Our results extend previously known researches. More... »

PAGES

623-630

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0742-0

DOI

http://dx.doi.org/10.1007/s13042-017-0742-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092693565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Changsha University", 
          "id": "https://www.grid.ac/institutes/grid.448798.e", 
          "name": [
            "Department of Mathematics and Computer Science, Changsha University, 410022, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chao", 
        "id": "sg:person.010113271355.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010113271355.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changsha University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440669.9", 
          "name": [
            "School of Mathematical and Statistics, Changsha University of Science and Technology, 410114, Changsha, Hunan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Lihong", 
        "id": "sg:person.012300736425.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300736425.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ins.2012.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001154384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002032477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2009.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002578139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2005.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003432423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010467680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6911(92)90097-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6911(92)90097-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2015.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014323329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9668-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015757957", 
          "https://doi.org/10.1007/s11071-010-9668-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9668-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015757957", 
          "https://doi.org/10.1007/s11071-010-9668-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018763707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2010.05.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019110587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2015.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019280896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1681-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019514193", 
          "https://doi.org/10.1007/s11071-014-1681-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.02.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023902057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-014-9307-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024113226", 
          "https://doi.org/10.1007/s11571-014-9307-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2012.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025024791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.05.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027059837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0071863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030429394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2016.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030651137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031021616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031735024", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031735024", 
          "https://doi.org/10.1007/978-3-642-69512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031735024", 
          "https://doi.org/10.1007/978-3-642-69512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032214792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-2711-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035910800", 
          "https://doi.org/10.1007/s11071-016-2711-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-011-9163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036265013", 
          "https://doi.org/10.1007/s11571-011-9163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0029-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036836317", 
          "https://doi.org/10.1007/s11071-011-0029-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037636043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038730506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039794457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2015.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052912852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2003.818614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061565013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2013.2244451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2013.2286027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.852862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.852862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2034742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2048759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2236355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2317880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2435794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2448549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2014.2343911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2015.2476491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2009.2024408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2009.2030506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-017-9590-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074207025", 
          "https://doi.org/10.1007/s11063-017-9590-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-017-9590-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074207025", 
          "https://doi.org/10.1007/s11063-017-9590-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2015.7162195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093559135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.25103/jestr.082.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107536758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "This paper considers the exponential synchronization for a class of coupled time-delayed neural networks with discontinuous activations. Based on differential inclusions theory, set-valued analysis, and by constructing suitable coupling function and Lyapunov function, designing a novel discontinuous controller, when the controller and activation functions are both discontinuous, the global exponential synchronization for the coupled neural networks can be achieved. Especially, we consider a new Lyapunov\u2013Krasovskii functional which is time-dependent, and the results in this paper are applicable to the undirected weighted networks. Finally, to demonstrate the correctness of our results, a numerical example is provided to illustrate it. Our results extend previously known researches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0742-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design", 
    "pagination": "623-630", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e12f619a1c1e399729e7bdae8eda8d5122fa6221fc42096bef6d487aa324ea99"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0742-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092693565"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0742-0", 
      "https://app.dimensions.ai/details/publication/pub.1092693565"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72862_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-017-0742-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0742-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0742-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0742-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0742-0'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0742-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N038ffeb9c3654208bc8bd152d0392112
4 schema:citation sg:pub.10.1007/978-3-642-69512-4
5 sg:pub.10.1007/s11063-017-9590-x
6 sg:pub.10.1007/s11071-010-9668-8
7 sg:pub.10.1007/s11071-011-0029-z
8 sg:pub.10.1007/s11071-014-1681-x
9 sg:pub.10.1007/s11071-016-2711-7
10 sg:pub.10.1007/s11571-011-9163-z
11 sg:pub.10.1007/s11571-014-9307-z
12 https://app.dimensions.ai/details/publication/pub.1031735024
13 https://doi.org/10.1016/0167-6911(92)90097-c
14 https://doi.org/10.1016/j.apm.2009.03.014
15 https://doi.org/10.1016/j.cnsns.2010.08.037
16 https://doi.org/10.1016/j.ins.2012.07.040
17 https://doi.org/10.1016/j.jfranklin.2015.06.019
18 https://doi.org/10.1016/j.jfranklin.2015.07.001
19 https://doi.org/10.1016/j.nahs.2016.10.004
20 https://doi.org/10.1016/j.neucom.2013.06.038
21 https://doi.org/10.1016/j.neucom.2014.05.064
22 https://doi.org/10.1016/j.neucom.2015.01.018
23 https://doi.org/10.1016/j.neucom.2015.11.011
24 https://doi.org/10.1016/j.neunet.2012.04.009
25 https://doi.org/10.1016/j.neunet.2012.06.004
26 https://doi.org/10.1016/j.neunet.2013.12.005
27 https://doi.org/10.1016/j.neunet.2015.02.001
28 https://doi.org/10.1016/j.neunet.2015.11.009
29 https://doi.org/10.1016/j.neunet.2016.10.006
30 https://doi.org/10.1016/j.nonrwa.2010.05.037
31 https://doi.org/10.1016/j.nonrwa.2012.08.005
32 https://doi.org/10.1016/j.physa.2007.03.026
33 https://doi.org/10.1016/j.physd.2005.12.006
34 https://doi.org/10.1016/j.physleta.2008.02.085
35 https://doi.org/10.1109/ccdc.2015.7162195
36 https://doi.org/10.1109/tcsi.2003.818614
37 https://doi.org/10.1109/tcsi.2013.2244451
38 https://doi.org/10.1109/tcsi.2013.2286027
39 https://doi.org/10.1109/tnn.2005.852862
40 https://doi.org/10.1109/tnn.2009.2034742
41 https://doi.org/10.1109/tnn.2010.2048759
42 https://doi.org/10.1109/tnnls.2012.2236355
43 https://doi.org/10.1109/tnnls.2014.2317880
44 https://doi.org/10.1109/tnnls.2015.2435794
45 https://doi.org/10.1109/tnnls.2015.2448549
46 https://doi.org/10.1109/tsmc.2014.2343911
47 https://doi.org/10.1109/tsmc.2015.2476491
48 https://doi.org/10.1109/tsmcb.2009.2024408
49 https://doi.org/10.1109/tsmcb.2009.2030506
50 https://doi.org/10.1137/1.9781611970432
51 https://doi.org/10.1137/1.9781611971309
52 https://doi.org/10.1371/journal.pone.0071863
53 https://doi.org/10.25103/jestr.082.21
54 schema:datePublished 2019-04
55 schema:datePublishedReg 2019-04-01
56 schema:description This paper considers the exponential synchronization for a class of coupled time-delayed neural networks with discontinuous activations. Based on differential inclusions theory, set-valued analysis, and by constructing suitable coupling function and Lyapunov function, designing a novel discontinuous controller, when the controller and activation functions are both discontinuous, the global exponential synchronization for the coupled neural networks can be achieved. Especially, we consider a new Lyapunov–Krasovskii functional which is time-dependent, and the results in this paper are applicable to the undirected weighted networks. Finally, to demonstrate the correctness of our results, a numerical example is provided to illustrate it. Our results extend previously known researches.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf Ndbd47b0daddd4fecbf4b4670f56ca233
61 Ne4212e409c194c5298914934b62f0dee
62 sg:journal.1136696
63 schema:name Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design
64 schema:pagination 623-630
65 schema:productId N33a2d11d90844b1ea9d55b419ee9bab3
66 N4dde3f9bb39545049a93f1a835748986
67 Nf1a917a001fc4fce8ecbf2f6a1686616
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092693565
69 https://doi.org/10.1007/s13042-017-0742-0
70 schema:sdDatePublished 2019-04-11T12:54
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N5255b6c6b1694048a73aa545c3ee70c4
73 schema:url https://link.springer.com/10.1007%2Fs13042-017-0742-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N038ffeb9c3654208bc8bd152d0392112 rdf:first sg:person.010113271355.50
78 rdf:rest N23a1d0e831934ae6a65fe6c9b63925a0
79 N23a1d0e831934ae6a65fe6c9b63925a0 rdf:first sg:person.012300736425.95
80 rdf:rest rdf:nil
81 N33a2d11d90844b1ea9d55b419ee9bab3 schema:name doi
82 schema:value 10.1007/s13042-017-0742-0
83 rdf:type schema:PropertyValue
84 N4dde3f9bb39545049a93f1a835748986 schema:name dimensions_id
85 schema:value pub.1092693565
86 rdf:type schema:PropertyValue
87 N5255b6c6b1694048a73aa545c3ee70c4 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Ndbd47b0daddd4fecbf4b4670f56ca233 schema:volumeNumber 10
90 rdf:type schema:PublicationVolume
91 Ne4212e409c194c5298914934b62f0dee schema:issueNumber 4
92 rdf:type schema:PublicationIssue
93 Nf1a917a001fc4fce8ecbf2f6a1686616 schema:name readcube_id
94 schema:value e12f619a1c1e399729e7bdae8eda8d5122fa6221fc42096bef6d487aa324ea99
95 rdf:type schema:PropertyValue
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
100 schema:name Pure Mathematics
101 rdf:type schema:DefinedTerm
102 sg:journal.1136696 schema:issn 1868-8071
103 1868-808X
104 schema:name International Journal of Machine Learning and Cybernetics
105 rdf:type schema:Periodical
106 sg:person.010113271355.50 schema:affiliation https://www.grid.ac/institutes/grid.448798.e
107 schema:familyName Yang
108 schema:givenName Chao
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010113271355.50
110 rdf:type schema:Person
111 sg:person.012300736425.95 schema:affiliation https://www.grid.ac/institutes/grid.440669.9
112 schema:familyName Huang
113 schema:givenName Lihong
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300736425.95
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-642-69512-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031735024
117 https://doi.org/10.1007/978-3-642-69512-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11063-017-9590-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1074207025
120 https://doi.org/10.1007/s11063-017-9590-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11071-010-9668-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015757957
123 https://doi.org/10.1007/s11071-010-9668-8
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-011-0029-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036836317
126 https://doi.org/10.1007/s11071-011-0029-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-014-1681-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019514193
129 https://doi.org/10.1007/s11071-014-1681-x
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11071-016-2711-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035910800
132 https://doi.org/10.1007/s11071-016-2711-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11571-011-9163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036265013
135 https://doi.org/10.1007/s11571-011-9163-z
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11571-014-9307-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024113226
138 https://doi.org/10.1007/s11571-014-9307-z
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1031735024 schema:CreativeWork
141 https://doi.org/10.1016/0167-6911(92)90097-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327685
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.apm.2009.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002578139
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cnsns.2010.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031021616
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ins.2012.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001154384
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jfranklin.2015.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052912852
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jfranklin.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039794457
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.nahs.2016.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030651137
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neucom.2013.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010467680
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neucom.2014.05.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027059837
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neucom.2015.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037636043
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neucom.2015.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633184
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.neunet.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032477
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neunet.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973165
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neunet.2013.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038730506
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.neunet.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014323329
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.neunet.2015.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019280896
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neunet.2016.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032214792
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.nonrwa.2010.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019110587
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.nonrwa.2012.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025024791
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physa.2007.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018763707
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.physd.2005.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003432423
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.physleta.2008.02.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023902057
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/ccdc.2015.7162195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093559135
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tcsi.2003.818614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061565013
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tcsi.2013.2244451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567633
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tcsi.2013.2286027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567846
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tnn.2005.852862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716890
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tnn.2009.2034742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717630
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tnn.2010.2048759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717723
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tnnls.2012.2236355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718223
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tnnls.2014.2317880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718578
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tnnls.2015.2435794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718878
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tnnls.2015.2448549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718897
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tsmc.2014.2343911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794239
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tsmc.2015.2476491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794419
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tsmcb.2009.2024408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797099
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tsmcb.2009.2030506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797136
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1137/1.9781611970432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556635
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1137/1.9781611971309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553028
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0071863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030429394
220 rdf:type schema:CreativeWork
221 https://doi.org/10.25103/jestr.082.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107536758
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.440669.9 schema:alternateName Changsha University of Science and Technology
224 schema:name School of Mathematical and Statistics, Changsha University of Science and Technology, 410114, Changsha, Hunan, People’s Republic of China
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.448798.e schema:alternateName Changsha University
227 schema:name Department of Mathematics and Computer Science, Changsha University, 410022, Changsha, People’s Republic of China
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...