Pseudo almost periodic high-order cellular neural networks with complex deviating arguments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Aiping Zhang

ABSTRACT

In this paper, we propose and study the pseudo almost periodic high-order cellular neural networks with oscillating leakage coefficients and complex deviating arguments, which has not been studied in the existing literature. Applying the contraction mapping fixed point theorem and inequality analysis techniques, we establish a set of criteria for the existence and uniqueness of pseudo almost periodic solutions for this model, which can be easily tested in practice by simple algebra computations. The obtained results play an important role in designing high-order cellular neural networks with state-dependent delays. Moreover, some illustrative examples are given to demonstrate our theoretical results. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0715-3

DOI

http://dx.doi.org/10.1007/s13042-017-0715-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091410288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Science, Hunan University of Technology, 412000, Zhuzhou, Hunan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Aiping", 
        "id": "sg:person.013624361652.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013624361652.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/msds-2016-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001741166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1874-5725(06)80009-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002325643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2008.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003942725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2582-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004165994", 
          "https://doi.org/10.1007/s00521-016-2582-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2582-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004165994", 
          "https://doi.org/10.1007/s00521-016-2582-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2007.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004503669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2009.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004653356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-014-1732-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006317641", 
          "https://doi.org/10.1007/s00521-014-1732-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-015-0650-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106917", 
          "https://doi.org/10.1186/s13662-015-0650-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-015-0650-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106917", 
          "https://doi.org/10.1186/s13662-015-0650-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.07.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008316888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2004.09.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012469066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013212736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.06.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020524921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.02.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020751990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022381114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2006.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022830912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/967328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028276390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1906-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742666", 
          "https://doi.org/10.1007/s00521-015-1906-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-015-9462-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030943092", 
          "https://doi.org/10.1007/s11063-015-9462-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033778356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2012.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038658818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-016-9516-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307174", 
          "https://doi.org/10.1007/s11063-016-9516-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2013.12.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043405040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1847-2013-162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045007270", 
          "https://doi.org/10.1186/1687-1847-2013-162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2006.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045341737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-014-9354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047189904", 
          "https://doi.org/10.1007/s11063-014-9354-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.7603/s40956-015-0004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049277220", 
          "https://doi.org/10.7603/s40956-015-0004-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2016.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050173613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.05.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051809720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110879971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052058703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-016-9573-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052423873", 
          "https://doi.org/10.1007/s11063-016-9573-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-016-9573-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052423873", 
          "https://doi.org/10.1007/s11063-016-9573-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2017.1354084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090972321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-1073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716447", 
          "https://doi.org/10.1007/978-94-007-1073-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-1073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716447", 
          "https://doi.org/10.1007/978-94-007-1073-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this paper, we propose and study the pseudo almost periodic high-order cellular neural networks with oscillating leakage coefficients and complex deviating arguments, which has not been studied in the existing literature. Applying the contraction mapping fixed point theorem and inequality analysis techniques, we establish a set of criteria for the existence and uniqueness of pseudo almost periodic solutions for this model, which can be easily tested in practice by simple algebra computations. The obtained results play an important role in designing high-order cellular neural networks with state-dependent delays. Moreover, some illustrative examples are given to demonstrate our theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0715-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "Pseudo almost periodic high-order cellular neural networks with complex deviating arguments", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cec7dc61c8957390caea0562e480891080f6f5c314f99d8f04b27054fe9c90df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0715-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091410288"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0715-3", 
      "https://app.dimensions.ai/details/publication/pub.1091410288"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13042-017-0715-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0715-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0715-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0715-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0715-3'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      57 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0715-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0b54bc27408c4fc6a8b8027f49e9b42c
4 schema:citation sg:pub.10.1007/978-94-007-1073-3
5 sg:pub.10.1007/s00521-014-1732-8
6 sg:pub.10.1007/s00521-015-1906-z
7 sg:pub.10.1007/s00521-016-2582-3
8 sg:pub.10.1007/s11063-014-9354-9
9 sg:pub.10.1007/s11063-015-9462-1
10 sg:pub.10.1007/s11063-016-9516-z
11 sg:pub.10.1007/s11063-016-9573-3
12 sg:pub.10.1186/1687-1847-2013-162
13 sg:pub.10.1186/s13662-015-0650-0
14 sg:pub.10.7603/s40956-015-0004-7
15 https://doi.org/10.1016/j.amc.2015.02.054
16 https://doi.org/10.1016/j.amc.2016.03.018
17 https://doi.org/10.1016/j.aml.2006.02.026
18 https://doi.org/10.1016/j.camwa.2008.04.029
19 https://doi.org/10.1016/j.chaos.2004.09.063
20 https://doi.org/10.1016/j.cnsns.2013.12.038
21 https://doi.org/10.1016/j.cnsns.2015.12.003
22 https://doi.org/10.1016/j.crma.2006.10.008
23 https://doi.org/10.1016/j.jfranklin.2009.12.004
24 https://doi.org/10.1016/j.jmaa.2006.02.039
25 https://doi.org/10.1016/j.na.2007.01.054
26 https://doi.org/10.1016/j.neucom.2014.07.020
27 https://doi.org/10.1016/j.neucom.2015.05.077
28 https://doi.org/10.1016/j.neucom.2015.06.070
29 https://doi.org/10.1016/j.neucom.2015.07.054
30 https://doi.org/10.1016/j.nonrwa.2012.07.016
31 https://doi.org/10.1016/s1874-5725(06)80009-x
32 https://doi.org/10.1080/0952813x.2017.1354084
33 https://doi.org/10.1155/2014/967328
34 https://doi.org/10.1515/9783110879971
35 https://doi.org/10.1515/msds-2016-0003
36 schema:datePublished 2019-02
37 schema:datePublishedReg 2019-02-01
38 schema:description In this paper, we propose and study the pseudo almost periodic high-order cellular neural networks with oscillating leakage coefficients and complex deviating arguments, which has not been studied in the existing literature. Applying the contraction mapping fixed point theorem and inequality analysis techniques, we establish a set of criteria for the existence and uniqueness of pseudo almost periodic solutions for this model, which can be easily tested in practice by simple algebra computations. The obtained results play an important role in designing high-order cellular neural networks with state-dependent delays. Moreover, some illustrative examples are given to demonstrate our theoretical results.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1136696
43 schema:name Pseudo almost periodic high-order cellular neural networks with complex deviating arguments
44 schema:pagination 1-9
45 schema:productId Nbac8a3840b114999bfff88df305b4a6f
46 Nd1e526cc92054306802d0e2e8572cf54
47 Nd98ac89441f444dab7812e2e595d3e7a
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091410288
49 https://doi.org/10.1007/s13042-017-0715-3
50 schema:sdDatePublished 2019-04-10T21:53
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N68753fb2f4ad4598aab321b2a4cc9a89
53 schema:url http://link.springer.com/10.1007/s13042-017-0715-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0b54bc27408c4fc6a8b8027f49e9b42c rdf:first sg:person.013624361652.00
58 rdf:rest rdf:nil
59 N68753fb2f4ad4598aab321b2a4cc9a89 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nbac8a3840b114999bfff88df305b4a6f schema:name readcube_id
62 schema:value cec7dc61c8957390caea0562e480891080f6f5c314f99d8f04b27054fe9c90df
63 rdf:type schema:PropertyValue
64 Nd1e526cc92054306802d0e2e8572cf54 schema:name dimensions_id
65 schema:value pub.1091410288
66 rdf:type schema:PropertyValue
67 Nd98ac89441f444dab7812e2e595d3e7a schema:name doi
68 schema:value 10.1007/s13042-017-0715-3
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136696 schema:issn 1868-8071
77 1868-808X
78 schema:name International Journal of Machine Learning and Cybernetics
79 rdf:type schema:Periodical
80 sg:person.013624361652.00 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
81 schema:familyName Zhang
82 schema:givenName Aiping
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013624361652.00
84 rdf:type schema:Person
85 sg:pub.10.1007/978-94-007-1073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716447
86 https://doi.org/10.1007/978-94-007-1073-3
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00521-014-1732-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006317641
89 https://doi.org/10.1007/s00521-014-1732-8
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00521-015-1906-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030742666
92 https://doi.org/10.1007/s00521-015-1906-z
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00521-016-2582-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004165994
95 https://doi.org/10.1007/s00521-016-2582-3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11063-014-9354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047189904
98 https://doi.org/10.1007/s11063-014-9354-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11063-015-9462-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030943092
101 https://doi.org/10.1007/s11063-015-9462-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11063-016-9516-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042307174
104 https://doi.org/10.1007/s11063-016-9516-z
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11063-016-9573-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052423873
107 https://doi.org/10.1007/s11063-016-9573-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/1687-1847-2013-162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045007270
110 https://doi.org/10.1186/1687-1847-2013-162
111 rdf:type schema:CreativeWork
112 sg:pub.10.1186/s13662-015-0650-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106917
113 https://doi.org/10.1186/s13662-015-0650-0
114 rdf:type schema:CreativeWork
115 sg:pub.10.7603/s40956-015-0004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049277220
116 https://doi.org/10.7603/s40956-015-0004-7
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.amc.2015.02.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020751990
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.amc.2016.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050173613
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.aml.2006.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045341737
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.camwa.2008.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003942725
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.chaos.2004.09.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012469066
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cnsns.2013.12.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043405040
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cnsns.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022381114
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.crma.2006.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022830912
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jfranklin.2009.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004653356
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jmaa.2006.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033778356
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.na.2007.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503669
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.neucom.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013212736
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.neucom.2015.05.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051809720
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neucom.2015.06.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020524921
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2015.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008316888
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.nonrwa.2012.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038658818
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s1874-5725(06)80009-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002325643
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/0952813x.2017.1354084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090972321
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1155/2014/967328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028276390
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1515/9783110879971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052058703
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1515/msds-2016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001741166
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.411431.2 schema:alternateName Hunan University of Technology
161 schema:name School of Science, Hunan University of Technology, 412000, Zhuzhou, Hunan, People’s Republic of China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...