Multi-task learning for subthalamic nucleus identification in deep brain stimulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

Hernán Darío Vargas Cardona, Mauricio A. Álvarez, Álvaro A. Orozco

ABSTRACT

Deep brain stimulation (DBS) of Subthalamic nucleus (STN) is the most successful treatment for advanced Parkinson’s disease. Localization of the STN through Microelectrode recordings (MER) is a key step during the surgery. However, it is a complex task even for a skilled neurosurgeon. Different researchers have developed methodologies for processing and classification of MER signals to locate the STN. Previous works employ the classical paradigm of supervised classification, assuming independence between patients. The aim of this paper is to introduce a patient-dependent learning scenario, where the predictive ability for STN identification at the level of a particular patient, can be used to improve the accuracy for STN identification in other patients. Our inspiration is the multi-task learning framework, that has been receiving increasing interest within the machine learning community in the last few years. To this end, we employ the multi-task Gaussian processes framework that exhibits state of the art performance in multi-task learning problems. In our context, we assume that each patient undergoing DBS is a different task, and we refer to the method as multi-patient learning. We show that the multi-patient learning framework improves the accuracy in the identification of STN in a range from 4.1 to 7.7%, compared to the usual patient-independent setup, for two different datasets. Given that MER are non stationary and noisy signals. Traditional approaches in machine learning fail to recognize accurately the STN during DBS. By contrast in our proposed method, we properly exploit correlations between patients with similar diseases, obtaining an additional information. This information allows to improve the accuracy not only for locating STN for DBS but also for other biomedical signal classification problems. More... »

PAGES

1181-1192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-017-0640-5

DOI

http://dx.doi.org/10.1007/s13042-017-0640-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083916488


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Doctorate Program in Engineering, Universidad Tecnol\u00f3gica de Pereira, Vereda La Julita, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vargas Cardona", 
        "givenName": "Hern\u00e1n Dar\u00edo", 
        "id": "sg:person.015517555665.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517555665.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Faculty of Engineering, Universidad Tecnol\u00f3gica de Pereira, Vereda La Julita, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez", 
        "givenName": "Mauricio A.", 
        "id": "sg:person.01212074571.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212074571.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Faculty of Engineering, Universidad Tecnol\u00f3gica de Pereira, Vereda La Julita, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco", 
        "givenName": "\u00c1lvaro A.", 
        "id": "sg:person.013562027545.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejmoa035275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000421344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2008.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001925638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wneu.2010.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007065437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(03)00120-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(03)00120-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-013-1070-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010508449", 
          "https://doi.org/10.1007/s00500-013-1070-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00653-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2003.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029997884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031892134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)60492-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035428775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.2007.126219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042923322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976604774201631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044789005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048550872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-007-5040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050401014", 
          "https://doi.org/10.1007/s10994-007-5040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007379606734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051365551", 
          "https://doi.org/10.1023/a:1007379606734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01889598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051412376", 
          "https://doi.org/10.1007/bf01889598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01889598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051412376", 
          "https://doi.org/10.1007/bf01889598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2168568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2007.106.1.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2007.106.1.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2007.106.1.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2008.4649790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077839195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2010.5628096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078306391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bmei.2008.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093396370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbeb.2012.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094308972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2008.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094580894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "Deep brain stimulation (DBS) of Subthalamic nucleus (STN) is the most successful treatment for advanced Parkinson\u2019s disease. Localization of the STN through Microelectrode recordings (MER) is a key step during the surgery. However, it is a complex task even for a skilled neurosurgeon. Different researchers have developed methodologies for processing and classification of MER signals to locate the STN. Previous works employ the classical paradigm of supervised classification, assuming independence between patients. The aim of this paper is to introduce a patient-dependent learning scenario, where the predictive ability for STN identification at the level of a particular patient, can be used to improve the accuracy for STN identification in other patients. Our inspiration is the multi-task learning framework, that has been receiving increasing interest within the machine learning community in the last few years. To this end, we employ the multi-task Gaussian processes framework that exhibits state of the art performance in multi-task learning problems. In our context, we assume that each patient undergoing DBS is a different task, and we refer to the method as multi-patient learning. We show that the multi-patient learning framework improves the accuracy in the identification of STN in a range from 4.1 to 7.7%, compared to the usual patient-independent setup, for two different datasets. Given that MER are non stationary and noisy signals. Traditional approaches in machine learning fail to recognize accurately the STN during DBS. By contrast in our proposed method, we properly exploit correlations between patients with similar diseases, obtaining an additional information. This information allows to improve the accuracy not only for locating STN for DBS but also for other biomedical signal classification problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-017-0640-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Multi-task learning for subthalamic nucleus identification in deep brain stimulation", 
    "pagination": "1181-1192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec3a0e76b8a11ff2824cdc815c3b5a56ae75ee84bf861612361c120f4773e00b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-017-0640-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083916488"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-017-0640-5", 
      "https://app.dimensions.ai/details/publication/pub.1083916488"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-017-0640-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0640-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0640-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0640-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-017-0640-5'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-017-0640-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1b3deb5da03e47cda872f8891eef67af
4 schema:citation sg:pub.10.1007/bf01889598
5 sg:pub.10.1007/s00500-013-1070-2
6 sg:pub.10.1007/s10994-007-5040-8
7 sg:pub.10.1023/a:1007379606734
8 https://doi.org/10.1016/j.conb.2003.11.001
9 https://doi.org/10.1016/j.expneurol.2008.11.024
10 https://doi.org/10.1016/j.jhydrol.2009.03.038
11 https://doi.org/10.1016/j.jhydrol.2015.08.022
12 https://doi.org/10.1016/j.neucom.2009.11.006
13 https://doi.org/10.1016/j.wneu.2010.11.008
14 https://doi.org/10.1016/s0140-6736(09)60492-x
15 https://doi.org/10.1016/s0165-0270(03)00120-1
16 https://doi.org/10.1016/s0925-2312(01)00653-1
17 https://doi.org/10.1056/nejmoa035275
18 https://doi.org/10.1109/bmei.2008.330
19 https://doi.org/10.1109/cbms.2008.54
20 https://doi.org/10.1109/embc.2012.6346927
21 https://doi.org/10.1109/icbeb.2012.266
22 https://doi.org/10.1109/iembs.2008.4649790
23 https://doi.org/10.1109/iembs.2010.5628096
24 https://doi.org/10.1109/iembs.2011.6091960
25 https://doi.org/10.1109/tnn.2011.2168568
26 https://doi.org/10.1109/tpami.2008.297
27 https://doi.org/10.1136/jnnp.2007.126219
28 https://doi.org/10.1162/089976604774201631
29 https://doi.org/10.1561/2200000036
30 https://doi.org/10.3171/jns.2007.106.1.175
31 schema:datePublished 2018-07
32 schema:datePublishedReg 2018-07-01
33 schema:description Deep brain stimulation (DBS) of Subthalamic nucleus (STN) is the most successful treatment for advanced Parkinson’s disease. Localization of the STN through Microelectrode recordings (MER) is a key step during the surgery. However, it is a complex task even for a skilled neurosurgeon. Different researchers have developed methodologies for processing and classification of MER signals to locate the STN. Previous works employ the classical paradigm of supervised classification, assuming independence between patients. The aim of this paper is to introduce a patient-dependent learning scenario, where the predictive ability for STN identification at the level of a particular patient, can be used to improve the accuracy for STN identification in other patients. Our inspiration is the multi-task learning framework, that has been receiving increasing interest within the machine learning community in the last few years. To this end, we employ the multi-task Gaussian processes framework that exhibits state of the art performance in multi-task learning problems. In our context, we assume that each patient undergoing DBS is a different task, and we refer to the method as multi-patient learning. We show that the multi-patient learning framework improves the accuracy in the identification of STN in a range from 4.1 to 7.7%, compared to the usual patient-independent setup, for two different datasets. Given that MER are non stationary and noisy signals. Traditional approaches in machine learning fail to recognize accurately the STN during DBS. By contrast in our proposed method, we properly exploit correlations between patients with similar diseases, obtaining an additional information. This information allows to improve the accuracy not only for locating STN for DBS but also for other biomedical signal classification problems.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Nc6ff1ba994734b469287c4e8e88bc85b
38 Nf6d659376bd7466bbdf11d6f391b29b2
39 sg:journal.1136696
40 schema:name Multi-task learning for subthalamic nucleus identification in deep brain stimulation
41 schema:pagination 1181-1192
42 schema:productId N835afcecb0fc498eb0f1d2590d6e1deb
43 Nd96a788989554ca09afded62a2732db0
44 Ndf8fd48255174362811c6b4bf5c51f00
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083916488
46 https://doi.org/10.1007/s13042-017-0640-5
47 schema:sdDatePublished 2019-04-11T12:38
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N903798b7335146aea503d8ea0e2c489f
50 schema:url https://link.springer.com/10.1007%2Fs13042-017-0640-5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1b3deb5da03e47cda872f8891eef67af rdf:first sg:person.015517555665.40
55 rdf:rest N247ddc02946840eda9148ae24111c67e
56 N247ddc02946840eda9148ae24111c67e rdf:first sg:person.01212074571.75
57 rdf:rest N475f8ffa2c3e4bbc82f4eda41ff9d46c
58 N475f8ffa2c3e4bbc82f4eda41ff9d46c rdf:first sg:person.013562027545.25
59 rdf:rest rdf:nil
60 N835afcecb0fc498eb0f1d2590d6e1deb schema:name doi
61 schema:value 10.1007/s13042-017-0640-5
62 rdf:type schema:PropertyValue
63 N903798b7335146aea503d8ea0e2c489f schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nc6ff1ba994734b469287c4e8e88bc85b schema:issueNumber 7
66 rdf:type schema:PublicationIssue
67 Nd96a788989554ca09afded62a2732db0 schema:name readcube_id
68 schema:value ec3a0e76b8a11ff2824cdc815c3b5a56ae75ee84bf861612361c120f4773e00b
69 rdf:type schema:PropertyValue
70 Ndf8fd48255174362811c6b4bf5c51f00 schema:name dimensions_id
71 schema:value pub.1083916488
72 rdf:type schema:PropertyValue
73 Nf6d659376bd7466bbdf11d6f391b29b2 schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1136696 schema:issn 1868-8071
82 1868-808X
83 schema:name International Journal of Machine Learning and Cybernetics
84 rdf:type schema:Periodical
85 sg:person.01212074571.75 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
86 schema:familyName Álvarez
87 schema:givenName Mauricio A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212074571.75
89 rdf:type schema:Person
90 sg:person.013562027545.25 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
91 schema:familyName Orozco
92 schema:givenName Álvaro A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25
94 rdf:type schema:Person
95 sg:person.015517555665.40 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
96 schema:familyName Vargas Cardona
97 schema:givenName Hernán Darío
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517555665.40
99 rdf:type schema:Person
100 sg:pub.10.1007/bf01889598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051412376
101 https://doi.org/10.1007/bf01889598
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00500-013-1070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010508449
104 https://doi.org/10.1007/s00500-013-1070-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10994-007-5040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050401014
107 https://doi.org/10.1007/s10994-007-5040-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1023/a:1007379606734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365551
110 https://doi.org/10.1023/a:1007379606734
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.conb.2003.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029997884
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.expneurol.2008.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972398
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jhydrol.2009.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048550872
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jhydrol.2015.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001925638
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.neucom.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892134
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.wneu.2010.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007065437
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0140-6736(09)60492-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035428775
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0165-0270(03)00120-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576181
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0925-2312(01)00653-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349929
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1056/nejmoa035275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000421344
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/bmei.2008.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093396370
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cbms.2008.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094580894
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/embc.2012.6346927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078682727
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/icbeb.2012.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094308972
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/iembs.2008.4649790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077839195
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/iembs.2010.5628096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078306391
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/iembs.2011.6091960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504199
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tnn.2011.2168568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717964
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tpami.2008.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743632
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1136/jnnp.2007.126219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042923322
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1162/089976604774201631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044789005
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1561/2200000036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001411
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3171/jns.2007.106.1.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071102175
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
159 schema:name Doctorate Program in Engineering, Universidad Tecnológica de Pereira, Vereda La Julita, Pereira, Colombia
160 Faculty of Engineering, Universidad Tecnológica de Pereira, Vereda La Julita, Pereira, Colombia
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...