Statistical binary patterns and post-competitive representation for pattern recognition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Mohamed Anouar Borgi, Thanh Phuong Nguyen, Demetrio Labate, Chokri Ben Amar

ABSTRACT

During the last decade, sparse representations have been successfully applied to design high-performing classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of SRC through the notion of collaborative representation, relying on the observation that the collaborative property is more crucial for classification than the l1-norm sparsity constraint on coding coefficients used in SRC. This paper follows the same general philosophy of CRC and its main novelty is the application of a virtual collaborative projection (VCP) routine designed to train images of every class against the other classes to improve fidelity before the projection of the query image. We combine this routine with a method of local feature extraction based on high-order statistical moments to further improve the representation. We demonstrate using extensive experiments of face recognition and classification that our approach performs very competitively with respect to state-of-the-art classification methods. For instance, using the AR face dataset, our method reaches 100% of accuracy for dimensionality 300. More... »

PAGES

1023-1038

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13042-016-0625-9

DOI

http://dx.doi.org/10.1007/s13042-016-0625-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019537254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sfax", 
          "id": "https://www.grid.ac/institutes/grid.412124.0", 
          "name": [
            "Research Groups on Intelligent Machines, University of Sfax, BP 1173, 3038, Sfax, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borgi", 
        "givenName": "Mohamed Anouar", 
        "id": "sg:person.014776135357.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776135357.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universite De Toulon Et Du Var", 
          "id": "https://www.grid.ac/institutes/grid.12611.35", 
          "name": [
            "Aix Marseille Universit\u00e9, CNRS, ENSAM, LSIS, UMR 7296, 13397, Marseille, France", 
            "Universit\u00e9 de Toulon, CNRS, LSIS, UMR 7296, 83957, La Garde, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Thanh Phuong", 
        "id": "sg:person.013450506437.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450506437.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Labate", 
        "givenName": "Demetrio", 
        "id": "sg:person.0631651374.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631651374.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sfax", 
          "id": "https://www.grid.ac/institutes/grid.412124.0", 
          "name": [
            "Research Groups on Intelligent Machines, University of Sfax, BP 1173, 3038, Sfax, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amar", 
        "givenName": "Chokri Ben", 
        "id": "sg:person.014062373433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014062373433.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11042-014-2228-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000168615", 
          "https://doi.org/10.1007/s11042-014-2228-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001414620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0059430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010281571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010987112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-014-0722-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013767454", 
          "https://doi.org/10.1007/s11263-014-0722-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2009.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026288985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15567-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674869", 
          "https://doi.org/10.1007/978-3-642-15567-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15567-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674869", 
          "https://doi.org/10.1007/978-3-642-15567-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-008-0123-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031868214", 
          "https://doi.org/10.1007/s10044-008-0123-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-008-0123-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031868214", 
          "https://doi.org/10.1007/s10044-008-0123-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034492577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41184-7_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037357399", 
          "https://doi.org/10.1007/978-3-642-41184-7_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104245", 
          "https://doi.org/10.1007/978-3-642-15561-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104245", 
          "https://doi.org/10.1007/978-3-642-15561-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-006-0033-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047547372", 
          "https://doi.org/10.1007/s10044-006-0033-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-006-0033-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047547372", 
          "https://doi.org/10.1007/s10044-006-0033-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10593-2_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049522846", 
          "https://doi.org/10.1007/978-3-319-10593-2_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.210173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061087448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.598228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.927464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.750575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2011.2138790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061575786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2002.999679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.884956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2041397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2044957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2012.2235849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2245340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2508025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093369149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093509715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7026068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093510208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093533991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093554591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6247931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093744382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093807006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093817401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093866141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094005250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094158430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2002.1044854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094202252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094359705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094484349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094552753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6247806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094572393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094623355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094816098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6853649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095068246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095371836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icvgip.2008.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095406855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095506116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.23.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099325624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "During the last decade, sparse representations have been successfully applied to design high-performing classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of SRC through the notion of collaborative representation, relying on the observation that the collaborative property is more crucial for classification than the l1-norm sparsity constraint on coding coefficients used in SRC. This paper follows the same general philosophy of CRC and its main novelty is the application of a virtual collaborative projection (VCP) routine designed to train images of every class against the other classes to improve fidelity before the projection of the query image. We combine this routine with a method of local feature extraction based on high-order statistical moments to further improve the representation. We demonstrate using extensive experiments of face recognition and classification that our approach performs very competitively with respect to state-of-the-art classification methods. For instance, using the AR face dataset, our method reaches 100% of accuracy for dimensionality 300.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13042-016-0625-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136696", 
        "issn": [
          "1868-8071", 
          "1868-808X"
        ], 
        "name": "International Journal of Machine Learning and Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Statistical binary patterns and post-competitive representation for pattern recognition", 
    "pagination": "1023-1038", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d168b2866b584fb574f93911cc194a8602164ed09a300575e51d297ea21f7e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13042-016-0625-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019537254"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13042-016-0625-9", 
      "https://app.dimensions.ai/details/publication/pub.1019537254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13042-016-0625-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-016-0625-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-016-0625-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-016-0625-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-016-0625-9'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13042-016-0625-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N95e2b6c7dc9c4c51a68099189b1bc90e
4 schema:citation sg:pub.10.1007/978-3-319-10593-2_41
5 sg:pub.10.1007/978-3-642-15561-1_1
6 sg:pub.10.1007/978-3-642-15567-3_33
7 sg:pub.10.1007/978-3-642-41184-7_62
8 sg:pub.10.1007/s10044-006-0033-y
9 sg:pub.10.1007/s10044-008-0123-0
10 sg:pub.10.1007/s11042-014-2228-3
11 sg:pub.10.1007/s11263-014-0722-8
12 https://doi.org/10.1016/j.eswa.2014.07.044
13 https://doi.org/10.1016/j.imavis.2009.08.002
14 https://doi.org/10.1016/j.imavis.2009.11.005
15 https://doi.org/10.1016/j.neucom.2015.09.029
16 https://doi.org/10.1016/j.patcog.2013.01.016
17 https://doi.org/10.1109/12.210173
18 https://doi.org/10.1109/34.598228
19 https://doi.org/10.1109/34.927464
20 https://doi.org/10.1109/72.750575
21 https://doi.org/10.1109/cvpr.2005.268
22 https://doi.org/10.1109/cvpr.2006.42
23 https://doi.org/10.1109/cvpr.2008.4587727
24 https://doi.org/10.1109/cvpr.2010.5539883
25 https://doi.org/10.1109/cvpr.2010.5539967
26 https://doi.org/10.1109/cvpr.2010.5540018
27 https://doi.org/10.1109/cvpr.2011.5995393
28 https://doi.org/10.1109/cvpr.2012.6247806
29 https://doi.org/10.1109/cvpr.2012.6247931
30 https://doi.org/10.1109/cvpr.2016.322
31 https://doi.org/10.1109/icassp.2014.6853649
32 https://doi.org/10.1109/iccv.2005.147
33 https://doi.org/10.1109/iccv.2009.5459169
34 https://doi.org/10.1109/iccv.2009.5459201
35 https://doi.org/10.1109/iccv.2011.6126277
36 https://doi.org/10.1109/iccv.2011.6126286
37 https://doi.org/10.1109/iccv.2011.6126426
38 https://doi.org/10.1109/icip.2014.7026068
39 https://doi.org/10.1109/icpr.2002.1044854
40 https://doi.org/10.1109/icpr.2014.317
41 https://doi.org/10.1109/icpr.2014.793
42 https://doi.org/10.1109/icvgip.2008.47
43 https://doi.org/10.1109/tcsvt.2011.2138790
44 https://doi.org/10.1109/tip.2002.999679
45 https://doi.org/10.1109/tip.2006.884956
46 https://doi.org/10.1109/tip.2010.2041397
47 https://doi.org/10.1109/tip.2010.2044957
48 https://doi.org/10.1109/tip.2012.2235849
49 https://doi.org/10.1109/tnnls.2013.2245340
50 https://doi.org/10.1109/tnnls.2015.2508025
51 https://doi.org/10.1109/tpami.2002.1017623
52 https://doi.org/10.1109/tpami.2005.92
53 https://doi.org/10.1109/tpami.2006.244
54 https://doi.org/10.1109/tpami.2008.79
55 https://doi.org/10.1109/tpami.2010.128
56 https://doi.org/10.1109/tpami.2010.220
57 https://doi.org/10.1371/journal.pone.0059430
58 https://doi.org/10.5244/c.23.124
59 schema:datePublished 2018-06
60 schema:datePublishedReg 2018-06-01
61 schema:description During the last decade, sparse representations have been successfully applied to design high-performing classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of SRC through the notion of collaborative representation, relying on the observation that the collaborative property is more crucial for classification than the l1-norm sparsity constraint on coding coefficients used in SRC. This paper follows the same general philosophy of CRC and its main novelty is the application of a virtual collaborative projection (VCP) routine designed to train images of every class against the other classes to improve fidelity before the projection of the query image. We combine this routine with a method of local feature extraction based on high-order statistical moments to further improve the representation. We demonstrate using extensive experiments of face recognition and classification that our approach performs very competitively with respect to state-of-the-art classification methods. For instance, using the AR face dataset, our method reaches 100% of accuracy for dimensionality 300.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N8cc1be16e7c6400cb50c2a031c88e6e2
66 Nb199667adae44afa9bce754484c125d7
67 sg:journal.1136696
68 schema:name Statistical binary patterns and post-competitive representation for pattern recognition
69 schema:pagination 1023-1038
70 schema:productId N0978800b90d143e39de058afb26e185f
71 N0afdf49418bc4284ac83160517e64cfc
72 N263869b1db6b45f6b9fef07263c17c0d
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019537254
74 https://doi.org/10.1007/s13042-016-0625-9
75 schema:sdDatePublished 2019-04-11T10:00
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N45d1e49e9d624be7b7e6b22c72018153
78 schema:url https://link.springer.com/10.1007%2Fs13042-016-0625-9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0045597f13a6494c9f1042118e3eb326 rdf:first sg:person.014062373433.49
83 rdf:rest rdf:nil
84 N0978800b90d143e39de058afb26e185f schema:name dimensions_id
85 schema:value pub.1019537254
86 rdf:type schema:PropertyValue
87 N0afdf49418bc4284ac83160517e64cfc schema:name doi
88 schema:value 10.1007/s13042-016-0625-9
89 rdf:type schema:PropertyValue
90 N263869b1db6b45f6b9fef07263c17c0d schema:name readcube_id
91 schema:value 5d168b2866b584fb574f93911cc194a8602164ed09a300575e51d297ea21f7e9
92 rdf:type schema:PropertyValue
93 N45d1e49e9d624be7b7e6b22c72018153 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N8cc1be16e7c6400cb50c2a031c88e6e2 schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 N95e2b6c7dc9c4c51a68099189b1bc90e rdf:first sg:person.014776135357.81
98 rdf:rest Ncc59b54433ab407bad69608d32d30608
99 Nb199667adae44afa9bce754484c125d7 schema:issueNumber 6
100 rdf:type schema:PublicationIssue
101 Ncc59b54433ab407bad69608d32d30608 rdf:first sg:person.013450506437.08
102 rdf:rest Ndbdb2787c6ba4267ba313c25d1c8008e
103 Ndbdb2787c6ba4267ba313c25d1c8008e rdf:first sg:person.0631651374.48
104 rdf:rest N0045597f13a6494c9f1042118e3eb326
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:journal.1136696 schema:issn 1868-8071
112 1868-808X
113 schema:name International Journal of Machine Learning and Cybernetics
114 rdf:type schema:Periodical
115 sg:person.013450506437.08 schema:affiliation https://www.grid.ac/institutes/grid.12611.35
116 schema:familyName Nguyen
117 schema:givenName Thanh Phuong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450506437.08
119 rdf:type schema:Person
120 sg:person.014062373433.49 schema:affiliation https://www.grid.ac/institutes/grid.412124.0
121 schema:familyName Amar
122 schema:givenName Chokri Ben
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014062373433.49
124 rdf:type schema:Person
125 sg:person.014776135357.81 schema:affiliation https://www.grid.ac/institutes/grid.412124.0
126 schema:familyName Borgi
127 schema:givenName Mohamed Anouar
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776135357.81
129 rdf:type schema:Person
130 sg:person.0631651374.48 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
131 schema:familyName Labate
132 schema:givenName Demetrio
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631651374.48
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-319-10593-2_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049522846
136 https://doi.org/10.1007/978-3-319-10593-2_41
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-642-15561-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104245
139 https://doi.org/10.1007/978-3-642-15561-1_1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-15567-3_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674869
142 https://doi.org/10.1007/978-3-642-15567-3_33
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-41184-7_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037357399
145 https://doi.org/10.1007/978-3-642-41184-7_62
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10044-006-0033-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047547372
148 https://doi.org/10.1007/s10044-006-0033-y
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10044-008-0123-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031868214
151 https://doi.org/10.1007/s10044-008-0123-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11042-014-2228-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000168615
154 https://doi.org/10.1007/s11042-014-2228-3
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11263-014-0722-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013767454
157 https://doi.org/10.1007/s11263-014-0722-8
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.eswa.2014.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034492577
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.imavis.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001414620
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.imavis.2009.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026288985
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neucom.2015.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013429524
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.patcog.2013.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987112
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/12.210173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061087448
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/34.598228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156617
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/34.927464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157278
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/72.750575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219174
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/cvpr.2005.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094552753
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/cvpr.2006.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094005250
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/cvpr.2008.4587727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094359705
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/cvpr.2010.5539883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093866141
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/cvpr.2010.5539967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094484349
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/cvpr.2010.5540018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095506116
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/cvpr.2011.5995393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093533991
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/cvpr.2012.6247806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094572393
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/cvpr.2012.6247931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093744382
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/cvpr.2016.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094158430
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/icassp.2014.6853649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095068246
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/iccv.2005.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093369149
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/iccv.2009.5459169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093817401
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/iccv.2009.5459201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095371836
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/iccv.2011.6126277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094816098
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/iccv.2011.6126286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093554591
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/iccv.2011.6126426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093807006
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/icip.2014.7026068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093510208
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/icpr.2002.1044854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094202252
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/icpr.2014.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094623355
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/icpr.2014.793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093509715
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/icvgip.2008.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095406855
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tcsvt.2011.2138790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575786
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tip.2002.999679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640827
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tip.2006.884956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641627
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tip.2010.2041397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642422
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/tip.2010.2044957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642447
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/tip.2012.2235849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643449
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/tnnls.2013.2245340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718253
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/tnnls.2015.2508025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719064
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1109/tpami.2005.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742947
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/tpami.2006.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743071
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/tpami.2008.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743675
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/tpami.2010.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743852
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/tpami.2010.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743932
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pone.0059430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010281571
250 rdf:type schema:CreativeWork
251 https://doi.org/10.5244/c.23.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325624
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.12611.35 schema:alternateName Universite De Toulon Et Du Var
254 schema:name Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397, Marseille, France
255 Université de Toulon, CNRS, LSIS, UMR 7296, 83957, La Garde, France
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
258 schema:name Department of Mathematics, University of Houston, 77204, Houston, TX, USA
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.412124.0 schema:alternateName University of Sfax
261 schema:name Research Groups on Intelligent Machines, University of Sfax, BP 1173, 3038, Sfax, Tunisia
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...