Extreme learning machines: a survey View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Guang-Bin Huang, Dian Hui Wang, Yuan Lan

ABSTRACT

Computational intelligence techniques have been used in wide applications. Out of numerous computational intelligence techniques, neural networks and support vector machines (SVMs) have been playing the dominant roles. However, it is known that both neural networks and SVMs face some challenging issues such as: (1) slow learning speed, (2) trivial human intervene, and/or (3) poor computational scalability. Extreme learning machine (ELM) as emergent technology which overcomes some challenges faced by other techniques has recently attracted the attention from more and more researchers. ELM works for generalized single-hidden layer feedforward networks (SLFNs). The essence of ELM is that the hidden layer of SLFNs need not be tuned. Compared with those traditional computational intelligence techniques, ELM provides better generalization performance at a much faster learning speed and with least human intervene. This paper gives a survey on ELM and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELM, (3) online sequential ELM, (4) incremental ELM, and (5) ensemble of ELM. More... »

PAGES

107-122

References to SciGraph publications

  • 2009-06. Negative correlation in incremental learning in NATURAL COMPUTING
  • 2010. Incremental-Based Extreme Learning Machine Algorithms for Time-Variant Neural Networks in ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS
  • 2012. Fast Construction of Single-Hidden-Layer Feedforward Networks in HANDBOOK OF NATURAL COMPUTING
  • 2005-09. Multiresponse Sparse Regression with Application to Multidimensional Scaling in NONE
  • 2010-06. Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification in KNOWLEDGE AND INFORMATION SYSTEMS
  • 2009. Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction in ARTIFICIAL NEURAL NETWORKS – ICANN 2009
  • 2008. OP-ELM: Theory, Experiments and a Toolbox in ARTIFICIAL NEURAL NETWORKS - ICANN 2008
  • 2010. Application of Wave Atoms Decomposition and Extreme Learning Machine for Fingerprint Classification in IMAGE ANALYSIS AND RECOGNITION
  • 2002-03-28. Efficient BackProp in NEURAL NETWORKS: TRICKS OF THE TRADE
  • 2008. Extreme Support Vector Machine Classifier in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 1989-12. Approximation by superpositions of a sigmoidal function in MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS
  • 1986-10. Learning representations by back-propagating errors in NATURE
  • 1999-06. Least Squares Support Vector Machine Classifiers in NEURAL PROCESSING LETTERS
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • 1990-06. The strength of weak learnability in MACHINE LEARNING
  • 2006. Extreme Learning Machine for Predicting HLA-Peptide Binding in ADVANCES IN NEURAL NETWORKS - ISNN 2006
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13042-011-0019-y

    DOI

    http://dx.doi.org/10.1007/s13042-011-0019-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031892380


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Guang-Bin", 
            "id": "sg:person.0730150332.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730150332.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "La Trobe University", 
              "id": "https://www.grid.ac/institutes/grid.1018.8", 
              "name": [
                "Department of Computer Science and Computer Engineering, La Trobe University, 3086, Melbourne, VIC, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Dian Hui", 
            "id": "sg:person.0765620756.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765620756.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lan", 
            "givenName": "Yuan", 
            "id": "sg:person.012117136654.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117136654.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002102446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003650446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcss.1997.1504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004338842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.07.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005260121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2008.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005791660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.11.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009989027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1997.9.2.461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011076998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2009.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011226671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14922-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012060178", 
              "https://doi.org/10.1007/978-3-642-14922-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013207250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87536-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013219440", 
              "https://doi.org/10.1007/978-3-540-87536-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87536-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013219440", 
              "https://doi.org/10.1007/978-3-540-87536-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.11.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014098687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-2312(00)00363-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014704337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015090992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dss.2008.07.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015210859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976603321891846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015803453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2010.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016208766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cidm.2009.4938676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018141245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018367015", 
              "https://doi.org/10.1038/323533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-009-0220-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018788826", 
              "https://doi.org/10.1007/s10115-009-0220-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-009-0220-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018788826", 
              "https://doi.org/10.1007/s10115-009-0220-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-009-0220-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018788826", 
              "https://doi.org/10.1007/s10115-009-0220-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020218459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00116037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020439953", 
              "https://doi.org/10.1007/bf00116037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.12.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020847072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/inco.1995.1136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021393978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/002071797223631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021888158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.11.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023439111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2007.04-07-508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024654823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018628609742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025353016", 
              "https://doi.org/10.1023/a:1018628609742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2009.03.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026853603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.11.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028669089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11760191_105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028720044", 
              "https://doi.org/10.1007/11760191_105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11760191_105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028720044", 
              "https://doi.org/10.1007/11760191_105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1993.5.6.954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031444491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2010.2103956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032283951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-92910-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033339504", 
              "https://doi.org/10.1007/978-3-540-92910-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49430-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033986161", 
              "https://doi.org/10.1007/3-540-49430-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49430-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033986161", 
              "https://doi.org/10.1007/3-540-49430-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.12.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034411196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80131-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035569394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80131-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035569394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13775-4_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035620758", 
              "https://doi.org/10.1007/978-3-642-13775-4_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13775-4_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035620758", 
              "https://doi.org/10.1007/978-3-642-13775-4_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s110100310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037625143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040860081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68125-0_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042258632", 
              "https://doi.org/10.1007/978-3-540-68125-0_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68125-0_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042258632", 
              "https://doi.org/10.1007/978-3-540-68125-0_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.05.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043387298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.880583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045855025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.camwa.2010.03.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046629203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11047-007-9063-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048437701", 
              "https://doi.org/10.1007/s11047-007-9063-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1991.3.2.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048705139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90003-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049232775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90003-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049232775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050371510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050371510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050572235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050572235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1991.3.2.213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050734533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2010.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051139987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.11.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052277688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04277-5_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052786823", 
              "https://doi.org/10.1007/978-3-642-04277-5_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-2312(01)00338-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052988723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19901121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056775345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-gtd.2010.0355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056826732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-gtd.2010.0355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056826732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.256500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061098999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.256500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061098999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.256500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061098999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.661502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.58871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/49.363139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061177178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.286926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.471375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.623214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.655045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.661125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.80290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.839004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.88168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.991427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2006.873687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061358350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2010.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsii.2005.857540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061569225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2002.1000133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2003.809401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2003.820828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2004.836241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2009.2024147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2009.2036259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrs.2008.926431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061777702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2004.834428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2007.901375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.267326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062549941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11550907_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084925655", 
              "https://doi.org/10.1007/11550907_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nnsp.1994.366045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093298126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2001.938819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094613977"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-06", 
        "datePublishedReg": "2011-06-01", 
        "description": "Computational intelligence techniques have been used in wide applications. Out of numerous computational intelligence techniques, neural networks and support vector machines (SVMs) have been playing the dominant roles. However, it is known that both neural networks and SVMs face some challenging issues such as: (1) slow learning speed, (2) trivial human intervene, and/or (3) poor computational scalability. Extreme learning machine (ELM) as emergent technology which overcomes some challenges faced by other techniques has recently attracted the attention from more and more researchers. ELM works for generalized single-hidden layer feedforward networks (SLFNs). The essence of ELM is that the hidden layer of SLFNs need not be tuned. Compared with those traditional computational intelligence techniques, ELM provides better generalization performance at a much faster learning speed and with least human intervene. This paper gives a survey on ELM and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELM, (3) online sequential ELM, (4) incremental ELM, and (5) ensemble of ELM.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13042-011-0019-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136696", 
            "issn": [
              "1868-8071", 
              "1868-808X"
            ], 
            "name": "International Journal of Machine Learning and Cybernetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Extreme learning machines: a survey", 
        "pagination": "107-122", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "97ed7c932200cbaaf723c36fe057e69bcb7b3083a23e8779988905692051930c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13042-011-0019-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031892380"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13042-011-0019-y", 
          "https://app.dimensions.ai/details/publication/pub.1031892380"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs13042-011-0019-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13042-011-0019-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13042-011-0019-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13042-011-0019-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13042-011-0019-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    371 TRIPLES      21 PREDICATES      119 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13042-011-0019-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5d9f639733324bdbadbb7fab9754b3d7
    4 schema:citation sg:pub.10.1007/11550907_16
    5 sg:pub.10.1007/11760191_105
    6 sg:pub.10.1007/3-540-49430-8_2
    7 sg:pub.10.1007/978-3-540-68125-0_21
    8 sg:pub.10.1007/978-3-540-87536-9_16
    9 sg:pub.10.1007/978-3-540-92910-9_16
    10 sg:pub.10.1007/978-3-642-04277-5_31
    11 sg:pub.10.1007/978-3-642-13775-4_25
    12 sg:pub.10.1007/978-3-642-14922-1_2
    13 sg:pub.10.1007/bf00058655
    14 sg:pub.10.1007/bf00116037
    15 sg:pub.10.1007/bf00994018
    16 sg:pub.10.1007/bf02551274
    17 sg:pub.10.1007/s10115-009-0220-4
    18 sg:pub.10.1007/s11047-007-9063-7
    19 sg:pub.10.1023/a:1018628609742
    20 sg:pub.10.1038/323533a0
    21 https://doi.org/10.1006/inco.1995.1136
    22 https://doi.org/10.1006/jcss.1997.1504
    23 https://doi.org/10.1016/0893-6080(89)90003-8
    24 https://doi.org/10.1016/0893-6080(89)90020-8
    25 https://doi.org/10.1016/0893-6080(91)90009-t
    26 https://doi.org/10.1016/j.camwa.2010.03.023
    27 https://doi.org/10.1016/j.dss.2008.07.009
    28 https://doi.org/10.1016/j.engappai.2010.06.009
    29 https://doi.org/10.1016/j.eswa.2010.07.014
    30 https://doi.org/10.1016/j.neucom.2005.03.002
    31 https://doi.org/10.1016/j.neucom.2005.12.126
    32 https://doi.org/10.1016/j.neucom.2007.02.009
    33 https://doi.org/10.1016/j.neucom.2007.07.025
    34 https://doi.org/10.1016/j.neucom.2007.10.008
    35 https://doi.org/10.1016/j.neucom.2008.01.005
    36 https://doi.org/10.1016/j.neucom.2009.02.013
    37 https://doi.org/10.1016/j.neucom.2009.03.016
    38 https://doi.org/10.1016/j.neucom.2010.01.020
    39 https://doi.org/10.1016/j.neucom.2010.02.001
    40 https://doi.org/10.1016/j.neucom.2010.02.019
    41 https://doi.org/10.1016/j.neucom.2010.05.022
    42 https://doi.org/10.1016/j.neucom.2010.07.012
    43 https://doi.org/10.1016/j.neucom.2010.11.030
    44 https://doi.org/10.1016/j.neucom.2010.11.031
    45 https://doi.org/10.1016/j.neucom.2010.11.033
    46 https://doi.org/10.1016/j.neucom.2010.11.035
    47 https://doi.org/10.1016/j.neucom.2010.11.037
    48 https://doi.org/10.1016/j.neucom.2010.12.040
    49 https://doi.org/10.1016/j.neucom.2010.12.042
    50 https://doi.org/10.1016/j.patcog.2010.08.009
    51 https://doi.org/10.1016/s0893-6080(05)80131-5
    52 https://doi.org/10.1016/s0925-2312(00)00363-5
    53 https://doi.org/10.1016/s0925-2312(01)00338-1
    54 https://doi.org/10.1049/el:19901121
    55 https://doi.org/10.1049/iet-gtd.2010.0355
    56 https://doi.org/10.1080/002071797223631
    57 https://doi.org/10.1109/18.256500
    58 https://doi.org/10.1109/18.661502
    59 https://doi.org/10.1109/34.58871
    60 https://doi.org/10.1109/49.363139
    61 https://doi.org/10.1109/72.286926
    62 https://doi.org/10.1109/72.471375
    63 https://doi.org/10.1109/72.623214
    64 https://doi.org/10.1109/72.655045
    65 https://doi.org/10.1109/72.661125
    66 https://doi.org/10.1109/72.80290
    67 https://doi.org/10.1109/72.839004
    68 https://doi.org/10.1109/72.88168
    69 https://doi.org/10.1109/72.991427
    70 https://doi.org/10.1109/cidm.2009.4938676
    71 https://doi.org/10.1109/ijcnn.2001.938819
    72 https://doi.org/10.1109/lgrs.2006.873687
    73 https://doi.org/10.1109/nnsp.1994.366045
    74 https://doi.org/10.1109/tcbb.2010.13
    75 https://doi.org/10.1109/tcsii.2005.857540
    76 https://doi.org/10.1109/tnn.2002.1000133
    77 https://doi.org/10.1109/tnn.2003.809401
    78 https://doi.org/10.1109/tnn.2003.820828
    79 https://doi.org/10.1109/tnn.2004.836241
    80 https://doi.org/10.1109/tnn.2006.875977
    81 https://doi.org/10.1109/tnn.2006.880583
    82 https://doi.org/10.1109/tnn.2009.2024147
    83 https://doi.org/10.1109/tnn.2009.2036259
    84 https://doi.org/10.1109/tnn.2010.2103956
    85 https://doi.org/10.1109/tpwrs.2008.926431
    86 https://doi.org/10.1109/tsmcb.2004.834428
    87 https://doi.org/10.1109/tsmcb.2007.901375
    88 https://doi.org/10.1126/science.267326
    89 https://doi.org/10.1162/089976603321891846
    90 https://doi.org/10.1162/neco.1991.3.2.213
    91 https://doi.org/10.1162/neco.1991.3.2.246
    92 https://doi.org/10.1162/neco.1993.5.6.954
    93 https://doi.org/10.1162/neco.1997.9.2.461
    94 https://doi.org/10.1162/neco.2007.04-07-508
    95 https://doi.org/10.3390/s110100310
    96 schema:datePublished 2011-06
    97 schema:datePublishedReg 2011-06-01
    98 schema:description Computational intelligence techniques have been used in wide applications. Out of numerous computational intelligence techniques, neural networks and support vector machines (SVMs) have been playing the dominant roles. However, it is known that both neural networks and SVMs face some challenging issues such as: (1) slow learning speed, (2) trivial human intervene, and/or (3) poor computational scalability. Extreme learning machine (ELM) as emergent technology which overcomes some challenges faced by other techniques has recently attracted the attention from more and more researchers. ELM works for generalized single-hidden layer feedforward networks (SLFNs). The essence of ELM is that the hidden layer of SLFNs need not be tuned. Compared with those traditional computational intelligence techniques, ELM provides better generalization performance at a much faster learning speed and with least human intervene. This paper gives a survey on ELM and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELM, (3) online sequential ELM, (4) incremental ELM, and (5) ensemble of ELM.
    99 schema:genre research_article
    100 schema:inLanguage en
    101 schema:isAccessibleForFree false
    102 schema:isPartOf N43a0a2d7d2be40f39530f25dc9393758
    103 N4f85971c13cd4554ac2664401623bc5d
    104 sg:journal.1136696
    105 schema:name Extreme learning machines: a survey
    106 schema:pagination 107-122
    107 schema:productId N542cdcef8474483ea045335a1aee483e
    108 Nedc7d98259204fefb37e0b0dae1b741a
    109 Nf35142ddf96644888f2cff483d1463b4
    110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892380
    111 https://doi.org/10.1007/s13042-011-0019-y
    112 schema:sdDatePublished 2019-04-10T17:34
    113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    114 schema:sdPublisher N7ed6e311e9864b07bca275d31bb54e8f
    115 schema:url http://link.springer.com/10.1007%2Fs13042-011-0019-y
    116 sgo:license sg:explorer/license/
    117 sgo:sdDataset articles
    118 rdf:type schema:ScholarlyArticle
    119 N43a0a2d7d2be40f39530f25dc9393758 schema:volumeNumber 2
    120 rdf:type schema:PublicationVolume
    121 N4f85971c13cd4554ac2664401623bc5d schema:issueNumber 2
    122 rdf:type schema:PublicationIssue
    123 N52f0034362c04d629e9f5551e3f48493 rdf:first sg:person.0765620756.13
    124 rdf:rest Nf67c22af24694c5fb4143fbd08be4499
    125 N542cdcef8474483ea045335a1aee483e schema:name readcube_id
    126 schema:value 97ed7c932200cbaaf723c36fe057e69bcb7b3083a23e8779988905692051930c
    127 rdf:type schema:PropertyValue
    128 N5d9f639733324bdbadbb7fab9754b3d7 rdf:first sg:person.0730150332.23
    129 rdf:rest N52f0034362c04d629e9f5551e3f48493
    130 N7ed6e311e9864b07bca275d31bb54e8f schema:name Springer Nature - SN SciGraph project
    131 rdf:type schema:Organization
    132 Nedc7d98259204fefb37e0b0dae1b741a schema:name dimensions_id
    133 schema:value pub.1031892380
    134 rdf:type schema:PropertyValue
    135 Nf35142ddf96644888f2cff483d1463b4 schema:name doi
    136 schema:value 10.1007/s13042-011-0019-y
    137 rdf:type schema:PropertyValue
    138 Nf67c22af24694c5fb4143fbd08be4499 rdf:first sg:person.012117136654.39
    139 rdf:rest rdf:nil
    140 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Information and Computing Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Artificial Intelligence and Image Processing
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1136696 schema:issn 1868-8071
    147 1868-808X
    148 schema:name International Journal of Machine Learning and Cybernetics
    149 rdf:type schema:Periodical
    150 sg:person.012117136654.39 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    151 schema:familyName Lan
    152 schema:givenName Yuan
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117136654.39
    154 rdf:type schema:Person
    155 sg:person.0730150332.23 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    156 schema:familyName Huang
    157 schema:givenName Guang-Bin
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730150332.23
    159 rdf:type schema:Person
    160 sg:person.0765620756.13 schema:affiliation https://www.grid.ac/institutes/grid.1018.8
    161 schema:familyName Wang
    162 schema:givenName Dian Hui
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765620756.13
    164 rdf:type schema:Person
    165 sg:pub.10.1007/11550907_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084925655
    166 https://doi.org/10.1007/11550907_16
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/11760191_105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028720044
    169 https://doi.org/10.1007/11760191_105
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/3-540-49430-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033986161
    172 https://doi.org/10.1007/3-540-49430-8_2
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/978-3-540-68125-0_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042258632
    175 https://doi.org/10.1007/978-3-540-68125-0_21
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-3-540-87536-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013219440
    178 https://doi.org/10.1007/978-3-540-87536-9_16
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/978-3-540-92910-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033339504
    181 https://doi.org/10.1007/978-3-540-92910-9_16
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/978-3-642-04277-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052786823
    184 https://doi.org/10.1007/978-3-642-04277-5_31
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-642-13775-4_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035620758
    187 https://doi.org/10.1007/978-3-642-13775-4_25
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-642-14922-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012060178
    190 https://doi.org/10.1007/978-3-642-14922-1_2
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    193 https://doi.org/10.1007/bf00058655
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf00116037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020439953
    196 https://doi.org/10.1007/bf00116037
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    199 https://doi.org/10.1007/bf00994018
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
    202 https://doi.org/10.1007/bf02551274
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10115-009-0220-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018788826
    205 https://doi.org/10.1007/s10115-009-0220-4
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11047-007-9063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048437701
    208 https://doi.org/10.1007/s11047-007-9063-7
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1023/a:1018628609742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353016
    211 https://doi.org/10.1023/a:1018628609742
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
    214 https://doi.org/10.1038/323533a0
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1006/inco.1995.1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021393978
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1006/jcss.1997.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004338842
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/0893-6080(89)90003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049232775
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/0893-6080(91)90009-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1050371510
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.camwa.2010.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629203
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.dss.2008.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015210859
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.engappai.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051139987
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.eswa.2010.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860081
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.neucom.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050572235
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.neucom.2007.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013207250
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.neucom.2007.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005260121
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.neucom.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035637386
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.neucom.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005791660
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.neucom.2009.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011226671
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.neucom.2009.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026853603
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.neucom.2010.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650446
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/j.neucom.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002102446
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/j.neucom.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090992
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/j.neucom.2010.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043387298
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1016/j.neucom.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020218459
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/j.neucom.2010.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014098687
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/j.neucom.2010.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009989027
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/j.neucom.2010.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028669089
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/j.neucom.2010.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023439111
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.neucom.2010.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052277688
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1016/j.neucom.2010.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020847072
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1016/j.neucom.2010.12.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411196
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1016/j.patcog.2010.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016208766
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1016/s0893-6080(05)80131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569394
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1016/s0925-2312(00)00363-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014704337
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1016/s0925-2312(01)00338-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052988723
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1049/el:19901121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056775345
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1049/iet-gtd.2010.0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056826732
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1080/002071797223631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021888158
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1109/18.256500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098999
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1109/18.661502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100600
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1109/34.58871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156595
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1109/49.363139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061177178
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1109/72.286926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218462
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1109/72.471375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218689
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1109/72.623214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218948
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1109/72.655045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219011
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1109/72.661125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219020
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1109/72.80290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219297
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1109/72.839004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219397
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1109/72.88168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219488
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1109/72.991427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219719
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1109/cidm.2009.4938676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018141245
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1109/ijcnn.2001.938819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094613977
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1109/lgrs.2006.873687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358350
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1109/nnsp.1994.366045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093298126
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1109/tcbb.2010.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540776
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1109/tcsii.2005.857540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061569225
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1109/tnn.2002.1000133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716421
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1109/tnn.2003.809401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716537
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1109/tnn.2003.820828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716662
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1109/tnn.2004.836241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716785
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1109/tnn.2006.875977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717036
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1109/tnn.2006.880583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045855025
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1109/tnn.2009.2024147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717572
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1109/tnn.2009.2036259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717641
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1109/tnn.2010.2103956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283951
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1109/tpwrs.2008.926431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061777702
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1109/tsmcb.2004.834428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796368
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1109/tsmcb.2007.901375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796762
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1126/science.267326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549941
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1162/089976603321891846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803453
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1162/neco.1991.3.2.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050734533
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1162/neco.1991.3.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048705139
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1162/neco.1993.5.6.954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031444491
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1162/neco.1997.9.2.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011076998
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1162/neco.2007.04-07-508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024654823
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.3390/s110100310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625143
    365 rdf:type schema:CreativeWork
    366 https://www.grid.ac/institutes/grid.1018.8 schema:alternateName La Trobe University
    367 schema:name Department of Computer Science and Computer Engineering, La Trobe University, 3086, Melbourne, VIC, Australia
    368 rdf:type schema:Organization
    369 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
    370 schema:name School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
    371 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...