Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-14

AUTHORS

Kazutaka Uchida, Junichi Kouno, Shinichi Yoshimura, Norito Kinjo, Fumihiro Sakakibara, Hayato Araki, Takeshi Morimoto

ABSTRACT

In conjunction with recent advancements in machine learning (ML), such technologies have been applied in various fields owing to their high predictive performance. We tried to develop prehospital stroke scale with ML. We conducted multi-center retrospective and prospective cohort study. The training cohort had eight centers in Japan from June 2015 to March 2018, and the test cohort had 13 centers from April 2019 to March 2020. We use the three different ML algorithms (logistic regression, random forests, XGBoost) to develop models. Main outcomes were large vessel occlusion (LVO), intracranial hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral infarction (CI) other than LVO. The predictive abilities were validated in the test cohort with accuracy, positive predictive value, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F score. The training cohort included 3178 patients with 337 LVO, 487 ICH, 131 SAH, and 676 CI cases, and the test cohort included 3127 patients with 183 LVO, 372 ICH, 90 SAH, and 577 CI cases. The overall accuracies were 0.65, and the positive predictive values, sensitivities, specificities, AUCs, and F scores were stable in the test cohort. The classification abilities were also fair for all ML models. The AUCs for LVO of logistic regression, random forests, and XGBoost were 0.89, 0.89, and 0.88, respectively, in the test cohort, and these values were higher than the previously reported prediction models for LVO. The ML models developed to predict the probability and types of stroke at the prehospital stage had superior predictive abilities. More... »

PAGES

370-381

References to SciGraph publications

  • 2001-10. Random Forests in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12975-021-00937-x

    DOI

    http://dx.doi.org/10.1007/s12975-021-00937-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140407476

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34389965


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Ischemia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Emergency Medical Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Japan", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stroke", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triage", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan", 
                "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uchida", 
            "givenName": "Kazutaka", 
            "id": "sg:person.01075462233.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075462233.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kouno", 
            "givenName": "Junichi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshimura", 
            "givenName": "Shinichi", 
            "id": "sg:person.013273201142.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273201142.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan", 
                "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kinjo", 
            "givenName": "Norito", 
            "id": "sg:person.014601567261.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601567261.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan", 
                "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakakibara", 
            "givenName": "Fumihiro", 
            "id": "sg:person.013672357213.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672357213.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Araki", 
            "givenName": "Hayato", 
            "id": "sg:person.012014451361.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014451361.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272264.7", 
              "name": [
                "Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morimoto", 
            "givenName": "Takeshi", 
            "id": "sg:person.011273662612.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-14", 
        "datePublishedReg": "2021-08-14", 
        "description": "In conjunction with recent advancements in machine learning (ML), such technologies have been applied in various fields owing to their high predictive performance. We tried to develop prehospital stroke scale with ML. We conducted multi-center retrospective and prospective cohort study. The training cohort had eight centers in Japan from June 2015 to March 2018, and the test cohort had 13 centers from April 2019 to March 2020. We use the three different ML algorithms (logistic regression, random forests, XGBoost) to develop models. Main outcomes were large vessel occlusion (LVO), intracranial hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral infarction (CI) other than LVO. The predictive abilities were validated in the test cohort with accuracy, positive predictive value, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F score. The training cohort included 3178 patients with 337 LVO, 487 ICH, 131 SAH, and 676 CI cases, and the test cohort included 3127 patients with 183 LVO, 372 ICH, 90 SAH, and 577 CI cases. The overall accuracies were 0.65, and the positive predictive values, sensitivities, specificities, AUCs, and F scores were stable in the test cohort. The classification abilities were also fair for all ML models. The AUCs for LVO of logistic regression, random forests, and XGBoost were 0.89, 0.89, and 0.88, respectively, in the test cohort, and these values were higher than the previously reported prediction models for LVO. The ML models developed to predict the probability and types of stroke at the prehospital stage had superior predictive abilities.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12975-021-00937-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042288", 
            "issn": [
              "1868-4483", 
              "1868-601X"
            ], 
            "name": "Translational Stroke Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "ML models", 
          "machine learning", 
          "different ML algorithms", 
          "ML algorithms", 
          "machine learning models", 
          "superior predictive ability", 
          "high predictive performance", 
          "predictive performance", 
          "probability", 
          "model", 
          "predictive ability", 
          "random forest", 
          "accuracy", 
          "prediction model", 
          "algorithm", 
          "learning model", 
          "field", 
          "classification ability", 
          "cases", 
          "values", 
          "curves", 
          "XGBoost", 
          "machine", 
          "performance", 
          "CI cases", 
          "types", 
          "conjunction", 
          "recent advancements", 
          "receiver", 
          "regression", 
          "scale", 
          "center", 
          "large vessel occlusion", 
          "F-score", 
          "overall accuracy", 
          "learning", 
          "test cohort", 
          "intracranial hemorrhage", 
          "subarachnoid hemorrhage", 
          "positive predictive value", 
          "characteristic curve", 
          "type of stroke", 
          "cerebral infarction", 
          "sensitivity", 
          "training cohort", 
          "ability", 
          "predictive value", 
          "prehospital stage", 
          "technology", 
          "prospective cohort study", 
          "Prehospital Stroke Scale", 
          "stage", 
          "Stroke Scale", 
          "cohort study", 
          "area", 
          "advancement", 
          "such technologies", 
          "cohort", 
          "MAIN OUTCOME", 
          "vessel occlusion", 
          "triage score", 
          "logistic regression", 
          "study", 
          "hemorrhage", 
          "scores", 
          "patients", 
          "stroke", 
          "development", 
          "AUC", 
          "infarction", 
          "specificity", 
          "outcomes", 
          "occlusion", 
          "forest", 
          "Japan"
        ], 
        "name": "Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML)", 
        "pagination": "370-381", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140407476"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12975-021-00937-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34389965"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12975-021-00937-x", 
          "https://app.dimensions.ai/details/publication/pub.1140407476"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_896.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12975-021-00937-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12975-021-00937-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12975-021-00937-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12975-021-00937-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12975-021-00937-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      113 URIs      102 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12975-021-00937-x schema:about N0709e0ff77214ef3a2d8c735288015b9
    2 N43053521fd5c4926ac5676db2955a53e
    3 N48f96b114e604800ba29072d10635083
    4 N694806567ddf4ab0ba4b038103e982fe
    5 N74afa3d1552e493e835605f679825e59
    6 N78ec5bf4b1c6493eab2421bc2671cc25
    7 N88a9ae4e8a354a0b99b29eb7c7218c2b
    8 N9195851043d4431bbae45304a07d159b
    9 Nd7446e0b506849f9ad34bcef3d1be24c
    10 Nee69040381d04a67b1babbf62ec72bfd
    11 anzsrc-for:11
    12 anzsrc-for:1103
    13 anzsrc-for:1109
    14 anzsrc-for:1117
    15 schema:author N93ecaa71ebef4af7b0324cbb41e5e74a
    16 schema:citation sg:pub.10.1023/a:1010933404324
    17 schema:datePublished 2021-08-14
    18 schema:datePublishedReg 2021-08-14
    19 schema:description In conjunction with recent advancements in machine learning (ML), such technologies have been applied in various fields owing to their high predictive performance. We tried to develop prehospital stroke scale with ML. We conducted multi-center retrospective and prospective cohort study. The training cohort had eight centers in Japan from June 2015 to March 2018, and the test cohort had 13 centers from April 2019 to March 2020. We use the three different ML algorithms (logistic regression, random forests, XGBoost) to develop models. Main outcomes were large vessel occlusion (LVO), intracranial hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral infarction (CI) other than LVO. The predictive abilities were validated in the test cohort with accuracy, positive predictive value, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F score. The training cohort included 3178 patients with 337 LVO, 487 ICH, 131 SAH, and 676 CI cases, and the test cohort included 3127 patients with 183 LVO, 372 ICH, 90 SAH, and 577 CI cases. The overall accuracies were 0.65, and the positive predictive values, sensitivities, specificities, AUCs, and F scores were stable in the test cohort. The classification abilities were also fair for all ML models. The AUCs for LVO of logistic regression, random forests, and XGBoost were 0.89, 0.89, and 0.88, respectively, in the test cohort, and these values were higher than the previously reported prediction models for LVO. The ML models developed to predict the probability and types of stroke at the prehospital stage had superior predictive abilities.
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N27217e35b7c645a0836b7eb25ad72593
    23 Na61b022eca59424794c5b097d13db0cd
    24 sg:journal.1042288
    25 schema:keywords AUC
    26 CI cases
    27 F-score
    28 Japan
    29 MAIN OUTCOME
    30 ML algorithms
    31 ML models
    32 Prehospital Stroke Scale
    33 Stroke Scale
    34 XGBoost
    35 ability
    36 accuracy
    37 advancement
    38 algorithm
    39 area
    40 cases
    41 center
    42 cerebral infarction
    43 characteristic curve
    44 classification ability
    45 cohort
    46 cohort study
    47 conjunction
    48 curves
    49 development
    50 different ML algorithms
    51 field
    52 forest
    53 hemorrhage
    54 high predictive performance
    55 infarction
    56 intracranial hemorrhage
    57 large vessel occlusion
    58 learning
    59 learning model
    60 logistic regression
    61 machine
    62 machine learning
    63 machine learning models
    64 model
    65 occlusion
    66 outcomes
    67 overall accuracy
    68 patients
    69 performance
    70 positive predictive value
    71 prediction model
    72 predictive ability
    73 predictive performance
    74 predictive value
    75 prehospital stage
    76 probability
    77 prospective cohort study
    78 random forest
    79 receiver
    80 recent advancements
    81 regression
    82 scale
    83 scores
    84 sensitivity
    85 specificity
    86 stage
    87 stroke
    88 study
    89 subarachnoid hemorrhage
    90 such technologies
    91 superior predictive ability
    92 technology
    93 test cohort
    94 training cohort
    95 triage score
    96 type of stroke
    97 types
    98 values
    99 vessel occlusion
    100 schema:name Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML)
    101 schema:pagination 370-381
    102 schema:productId N129596fd4dd94d558c887a28a594665e
    103 N295ee94774e64688a02a18278756cb12
    104 N4baab4c3bed047ed818711cd00e1e3f3
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140407476
    106 https://doi.org/10.1007/s12975-021-00937-x
    107 schema:sdDatePublished 2022-10-01T06:48
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N605bf09020e9442384c75962cd023cb2
    110 schema:url https://doi.org/10.1007/s12975-021-00937-x
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N0709e0ff77214ef3a2d8c735288015b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Humans
    116 rdf:type schema:DefinedTerm
    117 N129596fd4dd94d558c887a28a594665e schema:name pubmed_id
    118 schema:value 34389965
    119 rdf:type schema:PropertyValue
    120 N1c28992cc8d34e6c8b80ac53de5f8c1c rdf:first sg:person.013273201142.18
    121 rdf:rest Nc6282a93a2854d298288b3b062a4d8e3
    122 N27217e35b7c645a0836b7eb25ad72593 schema:volumeNumber 13
    123 rdf:type schema:PublicationVolume
    124 N295ee94774e64688a02a18278756cb12 schema:name doi
    125 schema:value 10.1007/s12975-021-00937-x
    126 rdf:type schema:PropertyValue
    127 N43053521fd5c4926ac5676db2955a53e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Prospective Studies
    129 rdf:type schema:DefinedTerm
    130 N48f96b114e604800ba29072d10635083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Triage
    132 rdf:type schema:DefinedTerm
    133 N4baab4c3bed047ed818711cd00e1e3f3 schema:name dimensions_id
    134 schema:value pub.1140407476
    135 rdf:type schema:PropertyValue
    136 N57a5f72342304de19f5e1b531121503d rdf:first sg:person.013672357213.62
    137 rdf:rest N8c7a1ea050f544e1b06e0e61c96333b7
    138 N605bf09020e9442384c75962cd023cb2 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N694806567ddf4ab0ba4b038103e982fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Japan
    142 rdf:type schema:DefinedTerm
    143 N6e62166b71ff43c0a1230c04b3bdc181 rdf:first Nf10f60ddf52b4b09b7f740381aa954d1
    144 rdf:rest N1c28992cc8d34e6c8b80ac53de5f8c1c
    145 N74afa3d1552e493e835605f679825e59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Retrospective Studies
    147 rdf:type schema:DefinedTerm
    148 N78ec5bf4b1c6493eab2421bc2671cc25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Machine Learning
    150 rdf:type schema:DefinedTerm
    151 N88a9ae4e8a354a0b99b29eb7c7218c2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Stroke
    153 rdf:type schema:DefinedTerm
    154 N8c7a1ea050f544e1b06e0e61c96333b7 rdf:first sg:person.012014451361.35
    155 rdf:rest N91525b05ea764918ad6bc20d0bb608c8
    156 N91525b05ea764918ad6bc20d0bb608c8 rdf:first sg:person.011273662612.03
    157 rdf:rest rdf:nil
    158 N9195851043d4431bbae45304a07d159b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Brain Ischemia
    160 rdf:type schema:DefinedTerm
    161 N93ecaa71ebef4af7b0324cbb41e5e74a rdf:first sg:person.01075462233.53
    162 rdf:rest N6e62166b71ff43c0a1230c04b3bdc181
    163 Na61b022eca59424794c5b097d13db0cd schema:issueNumber 3
    164 rdf:type schema:PublicationIssue
    165 Nc6282a93a2854d298288b3b062a4d8e3 rdf:first sg:person.014601567261.41
    166 rdf:rest N57a5f72342304de19f5e1b531121503d
    167 Nd7446e0b506849f9ad34bcef3d1be24c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Probability
    169 rdf:type schema:DefinedTerm
    170 Nee69040381d04a67b1babbf62ec72bfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Emergency Medical Services
    172 rdf:type schema:DefinedTerm
    173 Nf10f60ddf52b4b09b7f740381aa954d1 schema:affiliation grid-institutes:grid.272264.7
    174 schema:familyName Kouno
    175 schema:givenName Junichi
    176 rdf:type schema:Person
    177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Medical and Health Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Clinical Sciences
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Neurosciences
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Public Health and Health Services
    188 rdf:type schema:DefinedTerm
    189 sg:journal.1042288 schema:issn 1868-4483
    190 1868-601X
    191 schema:name Translational Stroke Research
    192 schema:publisher Springer Nature
    193 rdf:type schema:Periodical
    194 sg:person.01075462233.53 schema:affiliation grid-institutes:grid.272264.7
    195 schema:familyName Uchida
    196 schema:givenName Kazutaka
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075462233.53
    198 rdf:type schema:Person
    199 sg:person.011273662612.03 schema:affiliation grid-institutes:grid.272264.7
    200 schema:familyName Morimoto
    201 schema:givenName Takeshi
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03
    203 rdf:type schema:Person
    204 sg:person.012014451361.35 schema:affiliation grid-institutes:None
    205 schema:familyName Araki
    206 schema:givenName Hayato
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014451361.35
    208 rdf:type schema:Person
    209 sg:person.013273201142.18 schema:affiliation grid-institutes:grid.272264.7
    210 schema:familyName Yoshimura
    211 schema:givenName Shinichi
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273201142.18
    213 rdf:type schema:Person
    214 sg:person.013672357213.62 schema:affiliation grid-institutes:grid.272264.7
    215 schema:familyName Sakakibara
    216 schema:givenName Fumihiro
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672357213.62
    218 rdf:type schema:Person
    219 sg:person.014601567261.41 schema:affiliation grid-institutes:grid.272264.7
    220 schema:familyName Kinjo
    221 schema:givenName Norito
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601567261.41
    223 rdf:type schema:Person
    224 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    225 https://doi.org/10.1023/a:1010933404324
    226 rdf:type schema:CreativeWork
    227 grid-institutes:None schema:alternateName Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan
    228 schema:name Department of Neurosurgery, Araki Neurosurgical Hospital, Hiroshima, Japan
    229 rdf:type schema:Organization
    230 grid-institutes:grid.272264.7 schema:alternateName Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan
    231 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
    232 schema:name Department of Clinical Epidemiology, Hyogo College of Medicine, 1-1 Mukogawa, 663-8501, Nishinomiya, Hyogo, Japan
    233 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...