MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Ilya L. Gubskiy, Daria D. Namestnikova, Elvira A. Cherkashova, Vladimir P. Chekhonin, Vladimir P. Baklaushev, Leonid V. Gubsky, Konstantin N. Yarygin

ABSTRACT

The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications. Rats were subjected to either MRI-guided MCAO (group 1, n = 51) or MCAO without MRI control (group 2, n = 38). After operation, group 1 rats were transferred into a MRI scanner for the control of the filament position and possible complications. Ninety minutes after the onset of MCAO, the filament was removed in rats of both groups and MRI control of the infarct volume and hemorrhagic complications performed. High-resolution T1- and T2-weighted imaging performed immediately after filament insertion provided visualization of the filament position, blood flow in brain arteries, and complications related to inappropriate filament insertion. It permitted replacement of wrongly positioned filaments and exclusion of animals with complications from the experiment. MRI-based MCAO guiding provided real-time intra-operational monitoring of crucial parameters determining MCAO suitability for stroke modeling, including better assessment of the operation outcomes in individual animals and significant enhancement of the model success rate. The possibility of simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications is the principal advantage of the proposed method over other instrumental methods of MCAO quality control. Graphical Abstract MRI-guided middle cerebral artery occlusion technique permits intra-operational monitoring via direct non-invasive simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications. It provides better assessment of MCAO outcomes in individual animals and significant enhancement of MCAO success rate. More... »

PAGES

417-425

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12975-017-0590-y

DOI

http://dx.doi.org/10.1007/s12975-017-0590-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092984562

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29178027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infarction, Middle Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Wistar", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pirogov Russian National Research Medical University", 
          "id": "https://www.grid.ac/institutes/grid.78028.35", 
          "name": [
            "Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gubskiy", 
        "givenName": "Ilya L.", 
        "id": "sg:person.0636050660.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636050660.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirogov Russian National Research Medical University", 
          "id": "https://www.grid.ac/institutes/grid.78028.35", 
          "name": [
            "Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Namestnikova", 
        "givenName": "Daria D.", 
        "id": "sg:person.015230124373.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230124373.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirogov Russian National Research Medical University", 
          "id": "https://www.grid.ac/institutes/grid.78028.35", 
          "name": [
            "Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cherkashova", 
        "givenName": "Elvira A.", 
        "id": "sg:person.015015226353.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015226353.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirogov Russian National Research Medical University", 
          "id": "https://www.grid.ac/institutes/grid.78028.35", 
          "name": [
            "Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Pirogov Russian National Research Medical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chekhonin", 
        "givenName": "Vladimir P.", 
        "id": "sg:person.0646462745.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646462745.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Medical-Biological Agency", 
          "id": "https://www.grid.ac/institutes/grid.465277.5", 
          "name": [
            "Federal Research Clinical Center of Specialized Medical Care and Medical Technologies of the FMBA of Russia, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baklaushev", 
        "givenName": "Vladimir P.", 
        "id": "sg:person.01010557010.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010557010.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pirogov Russian National Research Medical University", 
          "id": "https://www.grid.ac/institutes/grid.78028.35", 
          "name": [
            "Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gubsky", 
        "givenName": "Leonid V.", 
        "id": "sg:person.014257516735.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257516735.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418846.7", 
          "name": [
            "Institute of Biomedical Chemistry, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yarygin", 
        "givenName": "Konstantin N.", 
        "id": "sg:person.01222317130.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222317130.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1038/jcbfm.2010.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000703852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2010.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000703852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2014.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001209151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.19.9.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001617209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2014.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005752380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2012.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007216301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2012.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007216301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-012-3296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008901776", 
          "https://doi.org/10.1007/s00221-012-3296-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.24.2.294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011200793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.steroids.2007.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018248663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019624199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0163-7258(94)00071-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021236389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/464701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027075292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.30.11.2464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027797130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.29.10.2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028831249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2008.08.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029638515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000142134.37512.a7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000142134.37512.a7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apradiso.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030160092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/neurintsurg-2014-011607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034084566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/neurintsurg-2014-011607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034084566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.112.655126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034593761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.112.655126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034593761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-4949.2010.00564.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036829110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-4949.2010.00564.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036829110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-4949.2010.00564.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036829110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.20.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041538936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041704357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/1978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042761495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/dddt.s56071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044860278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jbo.20.9.096012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046471847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046921158", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3995/jstroke.8.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.30.12.2743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053595498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01616412.1997.11740834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058296323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/1939-067x.1000108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073602221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/1939-067x.1000108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073602221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079138482", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083131993", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications. Rats were subjected to either MRI-guided MCAO (group 1, n\u2009=\u200951) or MCAO without MRI control (group 2, n\u2009=\u200938). After operation, group 1 rats were transferred into a MRI scanner for the control of the filament position and possible complications. Ninety minutes after the onset of MCAO, the filament was removed in rats of both groups and MRI control of the infarct volume and hemorrhagic complications performed. High-resolution T1- and T2-weighted imaging performed immediately after filament insertion provided visualization of the filament position, blood flow in brain arteries, and complications related to inappropriate filament insertion. It permitted replacement of wrongly positioned filaments and exclusion of animals with complications from the experiment. MRI-based MCAO guiding provided real-time intra-operational monitoring of crucial parameters determining MCAO suitability for stroke modeling, including better assessment of the operation outcomes in individual animals and significant enhancement of the model success rate. The possibility of simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications is the principal advantage of the proposed method over other instrumental methods of MCAO quality control. Graphical Abstract MRI-guided middle cerebral artery occlusion technique permits intra-operational monitoring via direct non-invasive simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications. It provides better assessment of MCAO outcomes in individual animals and significant enhancement of MCAO success rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12975-017-0590-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5052604", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042288", 
        "issn": [
          "1868-4483", 
          "1868-601X"
        ], 
        "name": "Translational Stroke Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling", 
    "pagination": "417-425", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87fa9c49cd561b4e9cd499e72761666f58c53be29e48a0845362fbf9ac3b5c45"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29178027"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101517297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12975-017-0590-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092984562"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12975-017-0590-y", 
      "https://app.dimensions.ai/details/publication/pub.1092984562"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12975-017-0590-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12975-017-0590-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12975-017-0590-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12975-017-0590-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12975-017-0590-y'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      69 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12975-017-0590-y schema:about N2df1cbef9e514233bbb0aeb61be499ee
2 N34cb1e4d2efd415fa7c48e84c7a98650
3 N7c994d0e14444b558b392d8e131e56ed
4 Nb99e0dace0ea4e3fad52e208f4ed1347
5 Nbe384b7b5ebb4fbf91162020903fe6a7
6 Nc9b5e32c76894154b2f2210313e863de
7 Nf1177423f9834b68a25c7891e056c342
8 Nfec88925d338454bb46a52f3a609101a
9 anzsrc-for:09
10 anzsrc-for:0903
11 schema:author Nc18e2c50e9a9448183432bb7a5c37e5e
12 schema:citation sg:pub.10.1007/s00221-012-3296-0
13 https://app.dimensions.ai/details/publication/pub.1046921158
14 https://app.dimensions.ai/details/publication/pub.1079138482
15 https://app.dimensions.ai/details/publication/pub.1083131993
16 https://doi.org/10.1002/jmri.10068
17 https://doi.org/10.1016/0163-7258(94)00071-a
18 https://doi.org/10.1016/j.apradiso.2009.03.002
19 https://doi.org/10.1016/j.brainres.2008.08.096
20 https://doi.org/10.1016/j.brainres.2014.08.003
21 https://doi.org/10.1016/j.jneumeth.2006.02.006
22 https://doi.org/10.1016/j.jneumeth.2006.02.017
23 https://doi.org/10.1016/j.neuroscience.2014.03.031
24 https://doi.org/10.1016/j.steroids.2007.02.003
25 https://doi.org/10.1038/jcbfm.2010.118
26 https://doi.org/10.1038/jcbfm.2012.69
27 https://doi.org/10.1080/01616412.1997.11740834
28 https://doi.org/10.1111/j.1747-4949.2010.00564.x
29 https://doi.org/10.1117/1.jbo.20.9.096012
30 https://doi.org/10.1136/neurintsurg-2014-011607
31 https://doi.org/10.1155/2011/464701
32 https://doi.org/10.1161/01.str.0000142134.37512.a7
33 https://doi.org/10.1161/01.str.19.9.1083
34 https://doi.org/10.1161/01.str.20.1.84
35 https://doi.org/10.1161/01.str.24.2.294
36 https://doi.org/10.1161/01.str.29.10.2162
37 https://doi.org/10.1161/01.str.30.11.2464
38 https://doi.org/10.1161/01.str.30.12.2743
39 https://doi.org/10.1161/strokeaha.112.655126
40 https://doi.org/10.2147/dddt.s56071
41 https://doi.org/10.3791/1978
42 https://doi.org/10.3995/jstroke.8.1
43 https://doi.org/10.4172/1939-067x.1000108
44 schema:datePublished 2018-08
45 schema:datePublishedReg 2018-08-01
46 schema:description The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications. Rats were subjected to either MRI-guided MCAO (group 1, n = 51) or MCAO without MRI control (group 2, n = 38). After operation, group 1 rats were transferred into a MRI scanner for the control of the filament position and possible complications. Ninety minutes after the onset of MCAO, the filament was removed in rats of both groups and MRI control of the infarct volume and hemorrhagic complications performed. High-resolution T1- and T2-weighted imaging performed immediately after filament insertion provided visualization of the filament position, blood flow in brain arteries, and complications related to inappropriate filament insertion. It permitted replacement of wrongly positioned filaments and exclusion of animals with complications from the experiment. MRI-based MCAO guiding provided real-time intra-operational monitoring of crucial parameters determining MCAO suitability for stroke modeling, including better assessment of the operation outcomes in individual animals and significant enhancement of the model success rate. The possibility of simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications is the principal advantage of the proposed method over other instrumental methods of MCAO quality control. Graphical Abstract MRI-guided middle cerebral artery occlusion technique permits intra-operational monitoring via direct non-invasive simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications. It provides better assessment of MCAO outcomes in individual animals and significant enhancement of MCAO success rate.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N5abc34777d0a44e5ad3b18e29a8ecb2c
51 N9633c2db9edc479d9ba2c4ef9e4aebd0
52 sg:journal.1042288
53 schema:name MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling
54 schema:pagination 417-425
55 schema:productId N160e447c5f0d44c8901dfee3c6c83de9
56 N30009aa4d0c0497e96e5a27a27b05849
57 N4ae9be6ee3e847c9b9e1e3e267641cdd
58 Nd66f8621d30940029e00276f0472470b
59 Nd750b6806cfa49248d913d190effd674
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092984562
61 https://doi.org/10.1007/s12975-017-0590-y
62 schema:sdDatePublished 2019-04-10T22:48
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N945ecabb2a834878b83cffcff15526be
65 schema:url https://link.springer.com/10.1007%2Fs12975-017-0590-y
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N104182f2dfe344be8acc80954dcc3f40 rdf:first sg:person.01222317130.16
70 rdf:rest rdf:nil
71 N160e447c5f0d44c8901dfee3c6c83de9 schema:name doi
72 schema:value 10.1007/s12975-017-0590-y
73 rdf:type schema:PropertyValue
74 N18fc68a38aea46e48b94342a8ad0a0d5 rdf:first sg:person.015230124373.16
75 rdf:rest Ne2718a179da14d2e8d0afe37a426f0a5
76 N29a8e0eaee3a462e9167dec4ecbe6b59 rdf:first sg:person.0646462745.17
77 rdf:rest Nceafa417658141dba7cb5647cda54ffd
78 N2df1cbef9e514233bbb0aeb61be499ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Rats
80 rdf:type schema:DefinedTerm
81 N30009aa4d0c0497e96e5a27a27b05849 schema:name pubmed_id
82 schema:value 29178027
83 rdf:type schema:PropertyValue
84 N34cb1e4d2efd415fa7c48e84c7a98650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Animals
86 rdf:type schema:DefinedTerm
87 N4ae9be6ee3e847c9b9e1e3e267641cdd schema:name readcube_id
88 schema:value 87fa9c49cd561b4e9cd499e72761666f58c53be29e48a0845362fbf9ac3b5c45
89 rdf:type schema:PropertyValue
90 N5abc34777d0a44e5ad3b18e29a8ecb2c schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 N7c994d0e14444b558b392d8e131e56ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Male
94 rdf:type schema:DefinedTerm
95 N945ecabb2a834878b83cffcff15526be schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N9633c2db9edc479d9ba2c4ef9e4aebd0 schema:issueNumber 4
98 rdf:type schema:PublicationIssue
99 Nb99e0dace0ea4e3fad52e208f4ed1347 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Infarction, Middle Cerebral Artery
101 rdf:type schema:DefinedTerm
102 Nbe384b7b5ebb4fbf91162020903fe6a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Magnetic Resonance Imaging
104 rdf:type schema:DefinedTerm
105 Nc18e2c50e9a9448183432bb7a5c37e5e rdf:first sg:person.0636050660.03
106 rdf:rest N18fc68a38aea46e48b94342a8ad0a0d5
107 Nc9b5e32c76894154b2f2210313e863de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Stroke
109 rdf:type schema:DefinedTerm
110 Nceafa417658141dba7cb5647cda54ffd rdf:first sg:person.01010557010.94
111 rdf:rest Neb6c372b19c24aa2bbbb10800e430c66
112 Nd66f8621d30940029e00276f0472470b schema:name nlm_unique_id
113 schema:value 101517297
114 rdf:type schema:PropertyValue
115 Nd750b6806cfa49248d913d190effd674 schema:name dimensions_id
116 schema:value pub.1092984562
117 rdf:type schema:PropertyValue
118 Ne2718a179da14d2e8d0afe37a426f0a5 rdf:first sg:person.015015226353.13
119 rdf:rest N29a8e0eaee3a462e9167dec4ecbe6b59
120 Neb6c372b19c24aa2bbbb10800e430c66 rdf:first sg:person.014257516735.38
121 rdf:rest N104182f2dfe344be8acc80954dcc3f40
122 Nf1177423f9834b68a25c7891e056c342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Rats, Wistar
124 rdf:type schema:DefinedTerm
125 Nfec88925d338454bb46a52f3a609101a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Disease Models, Animal
127 rdf:type schema:DefinedTerm
128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
129 schema:name Engineering
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biomedical Engineering
133 rdf:type schema:DefinedTerm
134 sg:grant.5052604 http://pending.schema.org/fundedItem sg:pub.10.1007/s12975-017-0590-y
135 rdf:type schema:MonetaryGrant
136 sg:journal.1042288 schema:issn 1868-4483
137 1868-601X
138 schema:name Translational Stroke Research
139 rdf:type schema:Periodical
140 sg:person.01010557010.94 schema:affiliation https://www.grid.ac/institutes/grid.465277.5
141 schema:familyName Baklaushev
142 schema:givenName Vladimir P.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010557010.94
144 rdf:type schema:Person
145 sg:person.01222317130.16 schema:affiliation https://www.grid.ac/institutes/grid.418846.7
146 schema:familyName Yarygin
147 schema:givenName Konstantin N.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222317130.16
149 rdf:type schema:Person
150 sg:person.014257516735.38 schema:affiliation https://www.grid.ac/institutes/grid.78028.35
151 schema:familyName Gubsky
152 schema:givenName Leonid V.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257516735.38
154 rdf:type schema:Person
155 sg:person.015015226353.13 schema:affiliation https://www.grid.ac/institutes/grid.78028.35
156 schema:familyName Cherkashova
157 schema:givenName Elvira A.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015226353.13
159 rdf:type schema:Person
160 sg:person.015230124373.16 schema:affiliation https://www.grid.ac/institutes/grid.78028.35
161 schema:familyName Namestnikova
162 schema:givenName Daria D.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230124373.16
164 rdf:type schema:Person
165 sg:person.0636050660.03 schema:affiliation https://www.grid.ac/institutes/grid.78028.35
166 schema:familyName Gubskiy
167 schema:givenName Ilya L.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636050660.03
169 rdf:type schema:Person
170 sg:person.0646462745.17 schema:affiliation https://www.grid.ac/institutes/grid.78028.35
171 schema:familyName Chekhonin
172 schema:givenName Vladimir P.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646462745.17
174 rdf:type schema:Person
175 sg:pub.10.1007/s00221-012-3296-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008901776
176 https://doi.org/10.1007/s00221-012-3296-0
177 rdf:type schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1046921158 schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1079138482 schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1083131993 schema:CreativeWork
181 https://doi.org/10.1002/jmri.10068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019624199
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0163-7258(94)00071-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021236389
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.apradiso.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030160092
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.brainres.2008.08.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029638515
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.brainres.2014.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005752380
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jneumeth.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048659675
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jneumeth.2006.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041704357
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuroscience.2014.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001209151
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.steroids.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018248663
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1038/jcbfm.2010.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000703852
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1038/jcbfm.2012.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007216301
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/01616412.1997.11740834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058296323
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1747-4949.2010.00564.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036829110
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1117/1.jbo.20.9.096012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046471847
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1136/neurintsurg-2014-011607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034084566
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1155/2011/464701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027075292
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/01.str.0000142134.37512.a7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867492
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/01.str.19.9.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001617209
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1161/01.str.20.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041538936
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1161/01.str.24.2.294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011200793
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1161/01.str.29.10.2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028831249
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1161/01.str.30.11.2464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027797130
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/01.str.30.12.2743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053595498
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1161/strokeaha.112.655126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034593761
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2147/dddt.s56071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044860278
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3791/1978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042761495
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3995/jstroke.8.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395811
234 rdf:type schema:CreativeWork
235 https://doi.org/10.4172/1939-067x.1000108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073602221
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.418846.7 schema:alternateName Institute of Biomedical Chemistry
238 schema:name Institute of Biomedical Chemistry, Moscow, Russia
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.465277.5 schema:alternateName Federal Medical-Biological Agency
241 schema:name Federal Research Clinical Center of Specialized Medical Care and Medical Technologies of the FMBA of Russia, Moscow, Russia
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.78028.35 schema:alternateName Pirogov Russian National Research Medical University
244 schema:name Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
245 Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia
246 Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Pirogov Russian National Research Medical University, Moscow, Russia
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...