Comparison of diagnostic accuracy between multidetector computed tomography and virtual histology intravascular ultrasound for detecting optical coherence tomography-derived fibroatheroma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10-23

AUTHORS

Manabu Kashiwagi, Atsushi Tanaka, Hironori Kitabata, Yuichi Ozaki, Kenichi Komukai, Takashi Tanimoto, Yasushi Ino, Takashi Kubo, Kumiko Hirata, Toshio Imanishi, Takashi Akasaka

ABSTRACT

Histopathological studies have reported that optical coherence tomography (OCT) can accurately detect fibroatheroma that is involved in not only culprit lesion of acute coronary syndrome but also no-reflow phenomenon after percutaneous coronary intervention. Studies have demonstrated superiority of OCT in plaque characterization and interruption of arterial wall component. At current, multidetector computed tomography (MDCT) and virtual histology intravascular ultrasound (VH-IVUS) are considered as alternative imaging devices for coronary plaque characterization. This study aimed to compare the diagnostic accuracy for detecting fibroatheroma between MDCT and VH-IVUS using OCT as the reference standard. Forty-three lesions from 27 patients assessed by MDCT, VH-IVUS, and OCT were included in this study. Fibroatheroma was defined by OCT as a signal-poor region with a fast signal drop-off and little or no signal backscattering within the lesion. From 43 lesions, OCT revealed 21 fibroatheromas. Ring-like sign assessed by MDCT and positive remodeling assessed by IVUS were more frequently observed in OCT-fibroatheroma than non-OCT-fibroatheroma. The remodeling index of OCT-fibroatheroma assessed by MDCT and IVUS were higher than those of non-OCT-fibroatheroma. The sensitivity, specificity, positive predict values, negative predict values and accuracy of ring-like sign by MDCT and VH-IVUS for detecting OCT-fibroatheroma were 43, 95, 90, 64, 70 % and 71, 45, 56, 63, 58 %, respectively. Our results suggest that both accuracies of MDCT and VH-IVUS to detect OCT-fibroatheroma are insufficient. We need to apply appropriate device for searching vulnerable plaque. More... »

PAGES

102-108

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12928-013-0219-3

DOI

http://dx.doi.org/10.1007/s12928-013-0219-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046299147

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24150708


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Coronary Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Optical Coherence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Interventional", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashiwagi", 
        "givenName": "Manabu", 
        "id": "sg:person.01051432331.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051432331.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Social Insurance Kinan Hospital, Tanabe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415240.6", 
          "name": [
            "Department of Cardiovascular Medicine, Social Insurance Kinan Hospital, Tanabe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Atsushi", 
        "id": "sg:person.0736227535.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227535.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitabata", 
        "givenName": "Hironori", 
        "id": "sg:person.0763703562.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763703562.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozaki", 
        "givenName": "Yuichi", 
        "id": "sg:person.01332777075.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332777075.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komukai", 
        "givenName": "Kenichi", 
        "id": "sg:person.01165660731.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165660731.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanimoto", 
        "givenName": "Takashi", 
        "id": "sg:person.0611657674.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611657674.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ino", 
        "givenName": "Yasushi", 
        "id": "sg:person.01302107331.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302107331.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubo", 
        "givenName": "Takashi", 
        "id": "sg:person.01347751771.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347751771.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Kumiko", 
        "id": "sg:person.01303133135.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303133135.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imanishi", 
        "givenName": "Toshio", 
        "id": "sg:person.01267150574.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267150574.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akasaka", 
        "givenName": "Takashi", 
        "id": "sg:person.0647415353.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647415353.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncpcardio1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023143945", 
          "https://doi.org/10.1038/ncpcardio1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12928-012-0140-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037505226", 
          "https://doi.org/10.1007/s12928-012-0140-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12928-009-0006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049802547", 
          "https://doi.org/10.1007/s12928-009-0006-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9786-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005541056", 
          "https://doi.org/10.1007/s10554-010-9786-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10-23", 
    "datePublishedReg": "2013-10-23", 
    "description": "Histopathological studies have reported that optical coherence tomography (OCT) can accurately detect fibroatheroma that is involved in not only culprit lesion of acute coronary syndrome but also no-reflow phenomenon after percutaneous coronary intervention. Studies have demonstrated superiority of OCT in plaque characterization and interruption of arterial wall component. At current, multidetector computed tomography (MDCT) and virtual histology intravascular ultrasound (VH-IVUS) are considered as alternative imaging devices for coronary plaque characterization. This study aimed to compare the diagnostic accuracy for detecting fibroatheroma between MDCT and VH-IVUS using OCT as the reference standard. Forty-three lesions from 27 patients assessed by MDCT, VH-IVUS, and OCT were included in this study. Fibroatheroma was defined by OCT as a signal-poor region with a fast signal drop-off and little or no signal backscattering within the lesion. From 43 lesions, OCT revealed 21 fibroatheromas. Ring-like sign assessed by MDCT and positive remodeling assessed by IVUS were more frequently observed in OCT-fibroatheroma than non-OCT-fibroatheroma. The remodeling index of OCT-fibroatheroma assessed by MDCT and IVUS were higher than those of non-OCT-fibroatheroma. The sensitivity, specificity, positive predict values, negative predict values and accuracy of ring-like sign by MDCT and VH-IVUS for detecting OCT-fibroatheroma were 43, 95, 90, 64, 70\u00a0% and 71, 45, 56, 63, 58\u00a0%, respectively. Our results suggest that both accuracies of MDCT and VH-IVUS to detect OCT-fibroatheroma are insufficient. We need to apply appropriate device for searching vulnerable plaque.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12928-013-0219-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042779", 
        "issn": [
          "1868-4300", 
          "1868-4297"
        ], 
        "name": "Cardiovascular Intervention and Therapeutics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "virtual histology intravascular ultrasound", 
      "VH-IVUS", 
      "optical coherence tomography", 
      "intravascular ultrasound", 
      "diagnostic accuracy", 
      "superiority of OCT", 
      "acute coronary syndrome", 
      "percutaneous coronary intervention", 
      "plaque characterization", 
      "accuracy of MDCT", 
      "negative predict value", 
      "arterial wall components", 
      "signal-poor regions", 
      "coronary plaque characterization", 
      "positive predict value", 
      "coronary syndrome", 
      "culprit lesion", 
      "coronary intervention", 
      "reflow phenomenon", 
      "positive remodeling", 
      "histopathological study", 
      "vulnerable plaques", 
      "fibroatheroma", 
      "coherence tomography", 
      "MDCT", 
      "lesions", 
      "predict value", 
      "multidetector", 
      "reference standard", 
      "tomography", 
      "IVUS", 
      "ultrasound", 
      "signs", 
      "patients", 
      "syndrome", 
      "plaques", 
      "study", 
      "intervention", 
      "remodeling", 
      "appropriate device", 
      "specificity", 
      "wall components", 
      "interruption", 
      "index", 
      "sensitivity", 
      "imaging devices", 
      "values", 
      "standards", 
      "comparison", 
      "results", 
      "characterization", 
      "region", 
      "accuracy", 
      "components", 
      "superiority", 
      "fast signals", 
      "signal backscattering", 
      "devices", 
      "signals", 
      "phenomenon", 
      "backscattering"
    ], 
    "name": "Comparison of diagnostic accuracy between multidetector computed tomography and virtual histology intravascular ultrasound for detecting optical coherence tomography-derived fibroatheroma", 
    "pagination": "102-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046299147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12928-013-0219-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24150708"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12928-013-0219-3", 
      "https://app.dimensions.ai/details/publication/pub.1046299147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12928-013-0219-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12928-013-0219-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12928-013-0219-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12928-013-0219-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12928-013-0219-3'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      105 URIs      93 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12928-013-0219-3 schema:about N066d0693508e4e90ba68be9d9a5311ea
2 N0c095f8482f8467ba34b1167438ddd07
3 N3231163bf93a4c21930a52ca064a7b80
4 N6ac7679452034cadbc5744208a789004
5 N6e31220f78bf49009fbbc19ba3d4ae01
6 N793c4427983545d1bc07ea8c5ef267be
7 N866854812dc24f2da00ef4b0a142c265
8 N9d27313a29af469382b79c0b6bbb5416
9 N9e19bade5c5a4e3eb10219535f9d4e96
10 Na389cd8212434c8595a8239897d91381
11 Naf7b1705aab6417fb321fbb89495df07
12 Ncad44628e1f74eb6ba40e27ea86e3a23
13 Nccf9893ed0b145e79a91697da0d5f641
14 Ncf70c57cb36a410b8e20a456909692ce
15 Ne2c30daa59ff48c7a69508069bb1dc20
16 anzsrc-for:09
17 anzsrc-for:0903
18 schema:author N1789543cdbec40e4a613627f9baeb35a
19 schema:citation sg:pub.10.1007/s10554-010-9786-x
20 sg:pub.10.1007/s12928-009-0006-3
21 sg:pub.10.1007/s12928-012-0140-1
22 sg:pub.10.1038/ncpcardio1123
23 schema:datePublished 2013-10-23
24 schema:datePublishedReg 2013-10-23
25 schema:description Histopathological studies have reported that optical coherence tomography (OCT) can accurately detect fibroatheroma that is involved in not only culprit lesion of acute coronary syndrome but also no-reflow phenomenon after percutaneous coronary intervention. Studies have demonstrated superiority of OCT in plaque characterization and interruption of arterial wall component. At current, multidetector computed tomography (MDCT) and virtual histology intravascular ultrasound (VH-IVUS) are considered as alternative imaging devices for coronary plaque characterization. This study aimed to compare the diagnostic accuracy for detecting fibroatheroma between MDCT and VH-IVUS using OCT as the reference standard. Forty-three lesions from 27 patients assessed by MDCT, VH-IVUS, and OCT were included in this study. Fibroatheroma was defined by OCT as a signal-poor region with a fast signal drop-off and little or no signal backscattering within the lesion. From 43 lesions, OCT revealed 21 fibroatheromas. Ring-like sign assessed by MDCT and positive remodeling assessed by IVUS were more frequently observed in OCT-fibroatheroma than non-OCT-fibroatheroma. The remodeling index of OCT-fibroatheroma assessed by MDCT and IVUS were higher than those of non-OCT-fibroatheroma. The sensitivity, specificity, positive predict values, negative predict values and accuracy of ring-like sign by MDCT and VH-IVUS for detecting OCT-fibroatheroma were 43, 95, 90, 64, 70 % and 71, 45, 56, 63, 58 %, respectively. Our results suggest that both accuracies of MDCT and VH-IVUS to detect OCT-fibroatheroma are insufficient. We need to apply appropriate device for searching vulnerable plaque.
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf Nc31b07dfde034f5797552cf265716ea2
29 Nd36b163768cf4ecbb77e8b0db60f63f7
30 sg:journal.1042779
31 schema:keywords IVUS
32 MDCT
33 VH-IVUS
34 accuracy
35 accuracy of MDCT
36 acute coronary syndrome
37 appropriate device
38 arterial wall components
39 backscattering
40 characterization
41 coherence tomography
42 comparison
43 components
44 coronary intervention
45 coronary plaque characterization
46 coronary syndrome
47 culprit lesion
48 devices
49 diagnostic accuracy
50 fast signals
51 fibroatheroma
52 histopathological study
53 imaging devices
54 index
55 interruption
56 intervention
57 intravascular ultrasound
58 lesions
59 multidetector
60 negative predict value
61 optical coherence tomography
62 patients
63 percutaneous coronary intervention
64 phenomenon
65 plaque characterization
66 plaques
67 positive predict value
68 positive remodeling
69 predict value
70 reference standard
71 reflow phenomenon
72 region
73 remodeling
74 results
75 sensitivity
76 signal backscattering
77 signal-poor regions
78 signals
79 signs
80 specificity
81 standards
82 study
83 superiority
84 superiority of OCT
85 syndrome
86 tomography
87 ultrasound
88 values
89 virtual histology intravascular ultrasound
90 vulnerable plaques
91 wall components
92 schema:name Comparison of diagnostic accuracy between multidetector computed tomography and virtual histology intravascular ultrasound for detecting optical coherence tomography-derived fibroatheroma
93 schema:pagination 102-108
94 schema:productId N5c5ed41e30e940bdb5a5048ff17fe93a
95 Nad19d0824888409bacadff66eec7b586
96 Ne1de83fe252b4bf79f2032e2f3775377
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046299147
98 https://doi.org/10.1007/s12928-013-0219-3
99 schema:sdDatePublished 2022-09-02T15:56
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N45b41f98d6154f68985c808678888491
102 schema:url https://doi.org/10.1007/s12928-013-0219-3
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N01fa12de640e4423a8617625d5421407 rdf:first sg:person.01303133135.29
107 rdf:rest N17eaedec42d74cd9b8a94d4ba8c95478
108 N066d0693508e4e90ba68be9d9a5311ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Severity of Illness Index
110 rdf:type schema:DefinedTerm
111 N0c095f8482f8467ba34b1167438ddd07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Multidetector Computed Tomography
113 rdf:type schema:DefinedTerm
114 N17316267d9eb4c248f254447ea4e8e83 rdf:first sg:person.0736227535.42
115 rdf:rest N61d1b29a01d44860abdd40605104fc66
116 N1789543cdbec40e4a613627f9baeb35a rdf:first sg:person.01051432331.47
117 rdf:rest N17316267d9eb4c248f254447ea4e8e83
118 N17eaedec42d74cd9b8a94d4ba8c95478 rdf:first sg:person.01267150574.18
119 rdf:rest N2867423f57cd4237bbe1b8d49283cf9a
120 N2867423f57cd4237bbe1b8d49283cf9a rdf:first sg:person.0647415353.43
121 rdf:rest rdf:nil
122 N2e1c41045f294a95bc104c550b6c28d9 rdf:first sg:person.01165660731.26
123 rdf:rest Nfebf1f4888cf4a699632494346b1c2a9
124 N3231163bf93a4c21930a52ca064a7b80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Tomography, Optical Coherence
126 rdf:type schema:DefinedTerm
127 N45b41f98d6154f68985c808678888491 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N5c5ed41e30e940bdb5a5048ff17fe93a schema:name dimensions_id
130 schema:value pub.1046299147
131 rdf:type schema:PropertyValue
132 N61d1b29a01d44860abdd40605104fc66 rdf:first sg:person.0763703562.67
133 rdf:rest N7ab86ebfab7c4879aa2f1513008ba75f
134 N6ac7679452034cadbc5744208a789004 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 N6e31220f78bf49009fbbc19ba3d4ae01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Aged, 80 and over
139 rdf:type schema:DefinedTerm
140 N793c4427983545d1bc07ea8c5ef267be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Male
142 rdf:type schema:DefinedTerm
143 N7ab86ebfab7c4879aa2f1513008ba75f rdf:first sg:person.01332777075.36
144 rdf:rest N2e1c41045f294a95bc104c550b6c28d9
145 N866854812dc24f2da00ef4b0a142c265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Ultrasonography, Interventional
147 rdf:type schema:DefinedTerm
148 N9d27313a29af469382b79c0b6bbb5416 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Predictive Value of Tests
150 rdf:type schema:DefinedTerm
151 N9e19bade5c5a4e3eb10219535f9d4e96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Aged
153 rdf:type schema:DefinedTerm
154 N9efb04252d8b43d2b9550c80993f3b67 rdf:first sg:person.01302107331.98
155 rdf:rest Nf11c9f508da24de9a2bbef40c70effdf
156 Na389cd8212434c8595a8239897d91381 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Acute Coronary Syndrome
158 rdf:type schema:DefinedTerm
159 Nad19d0824888409bacadff66eec7b586 schema:name doi
160 schema:value 10.1007/s12928-013-0219-3
161 rdf:type schema:PropertyValue
162 Naf7b1705aab6417fb321fbb89495df07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Humans
164 rdf:type schema:DefinedTerm
165 Nc31b07dfde034f5797552cf265716ea2 schema:volumeNumber 29
166 rdf:type schema:PublicationVolume
167 Ncad44628e1f74eb6ba40e27ea86e3a23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Sensitivity and Specificity
169 rdf:type schema:DefinedTerm
170 Nccf9893ed0b145e79a91697da0d5f641 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Risk Factors
172 rdf:type schema:DefinedTerm
173 Ncf70c57cb36a410b8e20a456909692ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Plaque, Atherosclerotic
175 rdf:type schema:DefinedTerm
176 Nd36b163768cf4ecbb77e8b0db60f63f7 schema:issueNumber 2
177 rdf:type schema:PublicationIssue
178 Ne1de83fe252b4bf79f2032e2f3775377 schema:name pubmed_id
179 schema:value 24150708
180 rdf:type schema:PropertyValue
181 Ne2c30daa59ff48c7a69508069bb1dc20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Middle Aged
183 rdf:type schema:DefinedTerm
184 Nf11c9f508da24de9a2bbef40c70effdf rdf:first sg:person.01347751771.77
185 rdf:rest N01fa12de640e4423a8617625d5421407
186 Nfebf1f4888cf4a699632494346b1c2a9 rdf:first sg:person.0611657674.62
187 rdf:rest N9efb04252d8b43d2b9550c80993f3b67
188 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
189 schema:name Engineering
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
192 schema:name Biomedical Engineering
193 rdf:type schema:DefinedTerm
194 sg:journal.1042779 schema:issn 1868-4297
195 1868-4300
196 schema:name Cardiovascular Intervention and Therapeutics
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.01051432331.47 schema:affiliation grid-institutes:grid.412857.d
200 schema:familyName Kashiwagi
201 schema:givenName Manabu
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051432331.47
203 rdf:type schema:Person
204 sg:person.01165660731.26 schema:affiliation grid-institutes:grid.412857.d
205 schema:familyName Komukai
206 schema:givenName Kenichi
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165660731.26
208 rdf:type schema:Person
209 sg:person.01267150574.18 schema:affiliation grid-institutes:grid.412857.d
210 schema:familyName Imanishi
211 schema:givenName Toshio
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267150574.18
213 rdf:type schema:Person
214 sg:person.01302107331.98 schema:affiliation grid-institutes:grid.412857.d
215 schema:familyName Ino
216 schema:givenName Yasushi
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302107331.98
218 rdf:type schema:Person
219 sg:person.01303133135.29 schema:affiliation grid-institutes:grid.412857.d
220 schema:familyName Hirata
221 schema:givenName Kumiko
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303133135.29
223 rdf:type schema:Person
224 sg:person.01332777075.36 schema:affiliation grid-institutes:grid.412857.d
225 schema:familyName Ozaki
226 schema:givenName Yuichi
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332777075.36
228 rdf:type schema:Person
229 sg:person.01347751771.77 schema:affiliation grid-institutes:grid.412857.d
230 schema:familyName Kubo
231 schema:givenName Takashi
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347751771.77
233 rdf:type schema:Person
234 sg:person.0611657674.62 schema:affiliation grid-institutes:grid.412857.d
235 schema:familyName Tanimoto
236 schema:givenName Takashi
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611657674.62
238 rdf:type schema:Person
239 sg:person.0647415353.43 schema:affiliation grid-institutes:grid.412857.d
240 schema:familyName Akasaka
241 schema:givenName Takashi
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647415353.43
243 rdf:type schema:Person
244 sg:person.0736227535.42 schema:affiliation grid-institutes:grid.415240.6
245 schema:familyName Tanaka
246 schema:givenName Atsushi
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227535.42
248 rdf:type schema:Person
249 sg:person.0763703562.67 schema:affiliation grid-institutes:grid.412857.d
250 schema:familyName Kitabata
251 schema:givenName Hironori
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763703562.67
253 rdf:type schema:Person
254 sg:pub.10.1007/s10554-010-9786-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005541056
255 https://doi.org/10.1007/s10554-010-9786-x
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/s12928-009-0006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049802547
258 https://doi.org/10.1007/s12928-009-0006-3
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s12928-012-0140-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037505226
261 https://doi.org/10.1007/s12928-012-0140-1
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/ncpcardio1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023143945
264 https://doi.org/10.1038/ncpcardio1123
265 rdf:type schema:CreativeWork
266 grid-institutes:grid.412857.d schema:alternateName Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
267 schema:name Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
268 rdf:type schema:Organization
269 grid-institutes:grid.415240.6 schema:alternateName Department of Cardiovascular Medicine, Social Insurance Kinan Hospital, Tanabe, Japan
270 schema:name Department of Cardiovascular Medicine, Social Insurance Kinan Hospital, Tanabe, Japan
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...