Response of Selected Kenyan Rice Cultivars to Infection by Root Knot Nematode (Meloidogyne incognita) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

John Namu, Amos Alakonya, Hannah Karuri, Justin Nyaga, Joel Masanga, Editah Njeri

ABSTRACT

Meloidogyne incognita causes huge yield losses in rice which is the third most important cereal crop in Kenya. The aim of this study was to identify M. incognita-resistant rice cultivars from Kenya and relate the responses to known resistance pathways with OsPR1a, OsPAL1, and OsJAMYB as marker genes in rice. Five rice cultivars BW 196, Basmati 217 (Pishori), Sindano, IR 2793-80-1 (grown in lowland irrigated fields), and NERICA 4 (grown in upland rainfed fields) were evaluated for resistance to M. incognita under greenhouse conditions in two separate trials. The number of nematode eggs, reproduction factor (RF), and the level of galling were determined. The RF was used to select resistant cultivars. There was a significant difference (P < 0.001) in the number of eggs, galling index, and RF among the cultivars. NERICA 4, BW 196, and Sindano were classified as resistant with an RF <1. There was differential expression of the three marker genes between susceptible and resistant cultivars. OsJAMYB gene was up-regulated in leaves of all rice cultivars after 1 and 3 days post inoculation (dpi). OsPAL1 was up-regulated in leaves of all varieties at 3 dpi while OsPR1a was down-regulated in leaves of resistant plants at 1 dpi and 3 dpi. These results provide an insight on sources of M. incognita resistance in Kenyan rice and it also forms an interesting starting point for further studies on defense responses of common rice varieties to root knot nematode infection. More... »

PAGES

47-54

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12892-017-0101-0

DOI

http://dx.doi.org/10.1007/s12892-017-0101-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O Box 30197-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Namu", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute of Tropical Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.425210.0", 
          "name": [
            "Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O Box 30197-00100, Nairobi, Kenya", 
            "International Institute of tropical Agriculture, Oyo road, Headquarters: PMB 5320, Ibadan, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alakonya", 
        "givenName": "Amos", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Embu", 
          "id": "https://www.grid.ac/institutes/grid.494614.a", 
          "name": [
            "Department of Biological Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karuri", 
        "givenName": "Hannah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Embu", 
          "id": "https://www.grid.ac/institutes/grid.494614.a", 
          "name": [
            "Department of Biological Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nyaga", 
        "givenName": "Justin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kenyatta University", 
          "id": "https://www.grid.ac/institutes/grid.9762.a", 
          "name": [
            "Plant transformation Laboratory, Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masanga", 
        "givenName": "Joel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kenyatta University", 
          "id": "https://www.grid.ac/institutes/grid.9762.a", 
          "name": [
            "Department of Business, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Njeri", 
        "givenName": "Editah", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jxb/erv470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000152798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.phyto.43.040204.135923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13313-011-0029-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005780353", 
          "https://doi.org/10.1007/s13313-011-0029-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03235408.2012.749702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005846940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.111.177576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007586986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.phyto.45.062806.094438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03235408.2013.829627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013353952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156854199508397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013393679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156854199508397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013393679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119949138.ch13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2012.04311.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020620109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2009.04098.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021474471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2009.04098.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021474471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mpp.12085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026413488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028339077", 
          "https://doi.org/10.1038/nchembio.164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028339077", 
          "https://doi.org/10.1038/nchembio.164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ert219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030248726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15685411-00002746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032323423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15685411-00002746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032323423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/003925995x00189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032890038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/003925995x00189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032890038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156854111x602613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041421768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156854111x602613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041421768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3146/i0095-3679-19-1-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046590905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15685411-00002787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047161762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/15685411-00002787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047161762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1438-8677.2011.00524.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047370225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.phyto.36.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050230523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2011.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051834256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2007.02185.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052411912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcw256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059395485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi.2001.14.4.527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060080391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/2015.december.21.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072393602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077858247", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077861243", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077861267", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077864103", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078701385", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Meloidogyne incognita causes huge yield losses in rice which is the third most important cereal crop in Kenya. The aim of this study was to identify M. incognita-resistant rice cultivars from Kenya and relate the responses to known resistance pathways with OsPR1a, OsPAL1, and OsJAMYB as marker genes in rice. Five rice cultivars BW 196, Basmati 217 (Pishori), Sindano, IR 2793-80-1 (grown in lowland irrigated fields), and NERICA 4 (grown in upland rainfed fields) were evaluated for resistance to M. incognita under greenhouse conditions in two separate trials. The number of nematode eggs, reproduction factor (RF), and the level of galling were determined. The RF was used to select resistant cultivars. There was a significant difference (P < 0.001) in the number of eggs, galling index, and RF among the cultivars. NERICA 4, BW 196, and Sindano were classified as resistant with an RF <1. There was differential expression of the three marker genes between susceptible and resistant cultivars. OsJAMYB gene was up-regulated in leaves of all rice cultivars after 1 and 3 days post inoculation (dpi). OsPAL1 was up-regulated in leaves of all varieties at 3 dpi while OsPR1a was down-regulated in leaves of resistant plants at 1 dpi and 3 dpi. These results provide an insight on sources of M. incognita resistance in Kenyan rice and it also forms an interesting starting point for further studies on defense responses of common rice varieties to root knot nematode infection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12892-017-0101-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047356", 
        "issn": [
          "1975-9479", 
          "2005-8276"
        ], 
        "name": "Journal of Crop Science and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Response of Selected Kenyan Rice Cultivars to Infection by Root Knot Nematode (Meloidogyne incognita)", 
    "pagination": "47-54", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e9560b072b3dae23363c96e6f7facdf0f1f10b18bfadd637635206e604dd329"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12892-017-0101-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12892-017-0101-0", 
      "https://app.dimensions.ai/details/publication/pub.1113144321"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12892-017-0101-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12892-017-0101-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12892-017-0101-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12892-017-0101-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12892-017-0101-0'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12892-017-0101-0 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N26104b160baa4c94b1f234168f1f8d58
4 schema:citation sg:pub.10.1007/s13313-011-0029-y
5 sg:pub.10.1038/nchembio.164
6 https://app.dimensions.ai/details/publication/pub.1077858247
7 https://app.dimensions.ai/details/publication/pub.1077861243
8 https://app.dimensions.ai/details/publication/pub.1077861267
9 https://app.dimensions.ai/details/publication/pub.1077864103
10 https://app.dimensions.ai/details/publication/pub.1078701385
11 https://doi.org/10.1002/9781119949138.ch13
12 https://doi.org/10.1016/j.pbi.2011.03.012
13 https://doi.org/10.1080/03235408.2012.749702
14 https://doi.org/10.1080/03235408.2013.829627
15 https://doi.org/10.1093/aob/mcw256
16 https://doi.org/10.1093/jxb/ert219
17 https://doi.org/10.1093/jxb/erv470
18 https://doi.org/10.1094/mpmi.2001.14.4.527
19 https://doi.org/10.1104/pp.111.177576
20 https://doi.org/10.1111/j.1365-313x.2009.04098.x
21 https://doi.org/10.1111/j.1438-8677.2011.00524.x
22 https://doi.org/10.1111/j.1469-8137.2007.02185.x
23 https://doi.org/10.1111/j.1469-8137.2012.04311.x
24 https://doi.org/10.1111/mpp.12085
25 https://doi.org/10.1146/annurev.phyto.36.1.277
26 https://doi.org/10.1146/annurev.phyto.43.040204.135923
27 https://doi.org/10.1146/annurev.phyto.45.062806.094438
28 https://doi.org/10.1163/003925995x00189
29 https://doi.org/10.1163/15685411-00002746
30 https://doi.org/10.1163/15685411-00002787
31 https://doi.org/10.1163/156854111x602613
32 https://doi.org/10.1163/156854199508397
33 https://doi.org/10.3146/i0095-3679-19-1-9
34 https://doi.org/10.4238/2015.december.21.7
35 schema:datePublished 2019-03
36 schema:datePublishedReg 2019-03-01
37 schema:description Meloidogyne incognita causes huge yield losses in rice which is the third most important cereal crop in Kenya. The aim of this study was to identify M. incognita-resistant rice cultivars from Kenya and relate the responses to known resistance pathways with OsPR1a, OsPAL1, and OsJAMYB as marker genes in rice. Five rice cultivars BW 196, Basmati 217 (Pishori), Sindano, IR 2793-80-1 (grown in lowland irrigated fields), and NERICA 4 (grown in upland rainfed fields) were evaluated for resistance to M. incognita under greenhouse conditions in two separate trials. The number of nematode eggs, reproduction factor (RF), and the level of galling were determined. The RF was used to select resistant cultivars. There was a significant difference (P < 0.001) in the number of eggs, galling index, and RF among the cultivars. NERICA 4, BW 196, and Sindano were classified as resistant with an RF <1. There was differential expression of the three marker genes between susceptible and resistant cultivars. OsJAMYB gene was up-regulated in leaves of all rice cultivars after 1 and 3 days post inoculation (dpi). OsPAL1 was up-regulated in leaves of all varieties at 3 dpi while OsPR1a was down-regulated in leaves of resistant plants at 1 dpi and 3 dpi. These results provide an insight on sources of M. incognita resistance in Kenyan rice and it also forms an interesting starting point for further studies on defense responses of common rice varieties to root knot nematode infection.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N5699b8b9857a4890af53822cedade9e5
42 N9216abf3e5b24d20ab0d2d0fc94dd7b2
43 sg:journal.1047356
44 schema:name Response of Selected Kenyan Rice Cultivars to Infection by Root Knot Nematode (Meloidogyne incognita)
45 schema:pagination 47-54
46 schema:productId N9516f4f938a643288f8511f5ccadfb59
47 Ne112f99af73c42b5a19dfa9c1934e944
48 Ne3030ea61d3e4ce0b6e91a67cb85ae0f
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144321
50 https://doi.org/10.1007/s12892-017-0101-0
51 schema:sdDatePublished 2019-04-11T13:27
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Na85fbab2a2ca433abd27a7de4e528e9a
54 schema:url https://link.springer.com/10.1007%2Fs12892-017-0101-0
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0213e8905b9b4b43a855e4e5aedf72ef rdf:first N60bba71399c2462195f2843904621914
59 rdf:rest N47e2760e4ff5455a8a76b5f8d539d7b6
60 N0cf31185f89243699b47dfc78c92462f schema:affiliation https://www.grid.ac/institutes/grid.9762.a
61 schema:familyName Njeri
62 schema:givenName Editah
63 rdf:type schema:Person
64 N26104b160baa4c94b1f234168f1f8d58 rdf:first N8a01be1abe714bf991d1f795b2c51be9
65 rdf:rest Nfc7cc78e8a9d4bdbab027ec75d9bc528
66 N47e2760e4ff5455a8a76b5f8d539d7b6 rdf:first N57188ab7a3ef45ce9155cbf78b76b519
67 rdf:rest N81d6be89803c4135b0202e6a4439d86d
68 N5699b8b9857a4890af53822cedade9e5 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N57188ab7a3ef45ce9155cbf78b76b519 schema:affiliation https://www.grid.ac/institutes/grid.494614.a
71 schema:familyName Nyaga
72 schema:givenName Justin
73 rdf:type schema:Person
74 N60bba71399c2462195f2843904621914 schema:affiliation https://www.grid.ac/institutes/grid.494614.a
75 schema:familyName Karuri
76 schema:givenName Hannah
77 rdf:type schema:Person
78 N7c4e63914cae47619acf327d70a35734 schema:affiliation https://www.grid.ac/institutes/grid.9762.a
79 schema:familyName Masanga
80 schema:givenName Joel
81 rdf:type schema:Person
82 N81d6be89803c4135b0202e6a4439d86d rdf:first N7c4e63914cae47619acf327d70a35734
83 rdf:rest Ne41996ec1e4a4ab095cd8efaea4d5c91
84 N8408feadca3c4270b951032781452244 schema:affiliation https://www.grid.ac/institutes/grid.425210.0
85 schema:familyName Alakonya
86 schema:givenName Amos
87 rdf:type schema:Person
88 N8a01be1abe714bf991d1f795b2c51be9 schema:affiliation https://www.grid.ac/institutes/grid.411943.a
89 schema:familyName Namu
90 schema:givenName John
91 rdf:type schema:Person
92 N9216abf3e5b24d20ab0d2d0fc94dd7b2 schema:volumeNumber 22
93 rdf:type schema:PublicationVolume
94 N9516f4f938a643288f8511f5ccadfb59 schema:name readcube_id
95 schema:value 6e9560b072b3dae23363c96e6f7facdf0f1f10b18bfadd637635206e604dd329
96 rdf:type schema:PropertyValue
97 Na85fbab2a2ca433abd27a7de4e528e9a schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ne112f99af73c42b5a19dfa9c1934e944 schema:name doi
100 schema:value 10.1007/s12892-017-0101-0
101 rdf:type schema:PropertyValue
102 Ne3030ea61d3e4ce0b6e91a67cb85ae0f schema:name dimensions_id
103 schema:value pub.1113144321
104 rdf:type schema:PropertyValue
105 Ne41996ec1e4a4ab095cd8efaea4d5c91 rdf:first N0cf31185f89243699b47dfc78c92462f
106 rdf:rest rdf:nil
107 Nfc7cc78e8a9d4bdbab027ec75d9bc528 rdf:first N8408feadca3c4270b951032781452244
108 rdf:rest N0213e8905b9b4b43a855e4e5aedf72ef
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
113 schema:name Genetics
114 rdf:type schema:DefinedTerm
115 sg:journal.1047356 schema:issn 1975-9479
116 2005-8276
117 schema:name Journal of Crop Science and Biotechnology
118 rdf:type schema:Periodical
119 sg:pub.10.1007/s13313-011-0029-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780353
120 https://doi.org/10.1007/s13313-011-0029-y
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nchembio.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028339077
123 https://doi.org/10.1038/nchembio.164
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1077858247 schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1077861243 schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1077861267 schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1077864103 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1078701385 schema:CreativeWork
130 https://doi.org/10.1002/9781119949138.ch13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014265708
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.pbi.2011.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051834256
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/03235408.2012.749702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005846940
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/03235408.2013.829627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013353952
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/aob/mcw256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059395485
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/jxb/ert219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030248726
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/jxb/erv470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000152798
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1094/mpmi.2001.14.4.527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060080391
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1104/pp.111.177576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007586986
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1365-313x.2009.04098.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021474471
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1438-8677.2011.00524.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047370225
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1469-8137.2007.02185.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052411912
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1469-8137.2012.04311.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020620109
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/mpp.12085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026413488
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1146/annurev.phyto.36.1.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050230523
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1146/annurev.phyto.43.040204.135923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063460
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1146/annurev.phyto.45.062806.094438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221868
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1163/003925995x00189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032890038
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1163/15685411-00002746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032323423
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1163/15685411-00002787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047161762
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1163/156854111x602613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041421768
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1163/156854199508397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013393679
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3146/i0095-3679-19-1-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046590905
175 rdf:type schema:CreativeWork
176 https://doi.org/10.4238/2015.december.21.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072393602
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.411943.a schema:alternateName Jomo Kenyatta University of Agriculture and Technology
179 schema:name Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O Box 30197-00100, Nairobi, Kenya
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.425210.0 schema:alternateName International Institute of Tropical Agriculture
182 schema:name Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O Box 30197-00100, Nairobi, Kenya
183 International Institute of tropical Agriculture, Oyo road, Headquarters: PMB 5320, Ibadan, Nigeria
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.494614.a schema:alternateName University of Embu
186 schema:name Department of Biological Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.9762.a schema:alternateName Kenyatta University
189 schema:name Department of Business, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
190 Plant transformation Laboratory, Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...