Comparative Study on MHD CARREAU Fluid Due to Stretching/Shrinking Surface in Suspension of Dust and Graphene Nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

H. B. Santhosh, Mahesha, S. Suresh Kumar Raju, C. S. K. Raju

ABSTRACT

In this investigation, we compared the effect of unsteady magneto hydrodynamic Carreau fluid in the interruption of graphene nanoparticles with heat generation over stretching and shrinking surface. The simulation is performed by combination of graphene nanoparticles into base water. Dispersion of graphene nanoparticles into base fluid finds several applications, such as biosensors, detection and purification of cancer cells, biocompatibility, and bio-imaging. The arising set of dimensional partial differential equations (PDEs) is converted into a set of non-dimensional ordinary differential equations (ODEs) by suitable similarity transformations, and then solved by the help of Runge-Kutta with shooting technique. The numerical results for non-dimensional velocity and temperature are displayed with graphs. We also analyzed the physical quantities (friction factor and local Nusselt number) for various values of non-dimensional physical parameters mathematically, and they are presented through tables. We also compared the present results with existing literature under some limited case. At the end of our analysis, we noted that radiation amplifies temperature profiles of both stretching and shrinking sheet cases. But, compared to shrinking sheet stretching sheet gains higher values. Heat generation parameter enriches temperature profiles in both stretching and shrinking sheets; compared to stretching sheet, shrinking sheet gains higher values. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12668-019-00624-0

DOI

http://dx.doi.org/10.1007/s12668-019-00624-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113172761


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics School of Technology, GITAM Deemed To Be University, 562163, Bengaluru, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santhosh", 
        "givenName": "H. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University B.D.T College of Engineering", 
          "id": "https://www.grid.ac/institutes/grid.460870.d", 
          "name": [
            "Department of Mathematics, University B.D.T. College of Engineering, 577004, Davangere, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahesha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Faisal University", 
          "id": "https://www.grid.ac/institutes/grid.412140.2", 
          "name": [
            "Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. 380, 31982, Hofuf, Al-Ahsa, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh Kumar Raju", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics School of Technology, GITAM Deemed To Be University, 562163, Bengaluru, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raju", 
        "givenName": "C. S. K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4932627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000947575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2014.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003601984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jestch.2014.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006009080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0111743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009219663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010006673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2007.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014332914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/.2016.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018550038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2014.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020030550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4929523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021589930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2012.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025276183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aej.2016.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029200997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0157180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033546389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2016.1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035927588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036625710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09615531011024039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052828648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/28/8/084702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059058751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4023959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5899/2015/cna-00228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073490138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00161-016-0552-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074198828", 
          "https://doi.org/10.1007/s00161-016-0552-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00161-016-0552-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074198828", 
          "https://doi.org/10.1007/s00161-016-0552-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18869/acadpub.jafm.68.224.23961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084375547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085457009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2017.1408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2017.1410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2018.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091692058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4858776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4858778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103659352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103659352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103659352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103659352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2018.1545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104432953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4039904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105686780"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this investigation, we compared the effect of unsteady magneto hydrodynamic Carreau fluid in the interruption of graphene nanoparticles with heat generation over stretching and shrinking surface. The simulation is performed by combination of graphene nanoparticles into base water. Dispersion of graphene nanoparticles into base fluid finds several applications, such as biosensors, detection and purification of cancer cells, biocompatibility, and bio-imaging. The arising set of dimensional partial differential equations (PDEs) is converted into a set of non-dimensional ordinary differential equations (ODEs) by suitable similarity transformations, and then solved by the help of Runge-Kutta with shooting technique. The numerical results for non-dimensional velocity and temperature are displayed with graphs. We also analyzed the physical quantities (friction factor and local Nusselt number) for various values of non-dimensional physical parameters mathematically, and they are presented through tables. We also compared the present results with existing literature under some limited case. At the end of our analysis, we noted that radiation amplifies temperature profiles of both stretching and shrinking sheet cases. But, compared to shrinking sheet stretching sheet gains higher values. Heat generation parameter enriches temperature profiles in both stretching and shrinking sheets; compared to stretching sheet, shrinking sheet gains higher values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12668-019-00624-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047355", 
        "issn": [
          "2191-1630", 
          "2191-1649"
        ], 
        "name": "BioNanoScience", 
        "type": "Periodical"
      }
    ], 
    "name": "Comparative Study on MHD CARREAU Fluid Due to Stretching/Shrinking Surface in Suspension of Dust and Graphene Nanoparticles", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5948081a4f91d67e61db33e27423542546fabd13b545dca0f9626ce3875dacbb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12668-019-00624-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113172761"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12668-019-00624-0", 
      "https://app.dimensions.ai/details/publication/pub.1113172761"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12668-019-00624-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00624-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00624-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00624-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00624-0'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12668-019-00624-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na48bee416e474b978bd801c0460d0f3e
4 schema:citation sg:pub.10.1007/s00161-016-0552-8
5 https://doi.org/10.1016/j.aej.2014.03.013
6 https://doi.org/10.1016/j.aej.2016.03.023
7 https://doi.org/10.1016/j.asej.2014.05.006
8 https://doi.org/10.1016/j.cnsns.2010.01.013
9 https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
10 https://doi.org/10.1016/j.jestch.2014.12.006
11 https://doi.org/10.1016/j.jfranklin.2012.11.004
12 https://doi.org/10.1016/j.jmmm.2016.08.013
13 https://doi.org/10.1016/j.powtec.2017.05.003
14 https://doi.org/10.1016/j.rinp.2018.04.038
15 https://doi.org/10.1016/j.scient.2012.10.021
16 https://doi.org/10.1017/.2016.56
17 https://doi.org/10.1063/1.4858776
18 https://doi.org/10.1063/1.4858778
19 https://doi.org/10.1063/1.4929523
20 https://doi.org/10.1063/1.4932627
21 https://doi.org/10.1088/0256-307x/28/8/084702
22 https://doi.org/10.1108/09615531011024039
23 https://doi.org/10.1115/1.4023959
24 https://doi.org/10.1115/1.4039904
25 https://doi.org/10.1166/jon.2016.1247
26 https://doi.org/10.1166/jon.2017.1408
27 https://doi.org/10.1166/jon.2017.1410
28 https://doi.org/10.1166/jon.2018.1427
29 https://doi.org/10.1166/jon.2018.1545
30 https://doi.org/10.1371/journal.pone.0111743
31 https://doi.org/10.1371/journal.pone.0157180
32 https://doi.org/10.18869/acadpub.jafm.68.224.23961
33 https://doi.org/10.5899/2015/cna-00228
34 schema:datePublished 2019-04-01
35 schema:datePublishedReg 2019-04-01
36 schema:description In this investigation, we compared the effect of unsteady magneto hydrodynamic Carreau fluid in the interruption of graphene nanoparticles with heat generation over stretching and shrinking surface. The simulation is performed by combination of graphene nanoparticles into base water. Dispersion of graphene nanoparticles into base fluid finds several applications, such as biosensors, detection and purification of cancer cells, biocompatibility, and bio-imaging. The arising set of dimensional partial differential equations (PDEs) is converted into a set of non-dimensional ordinary differential equations (ODEs) by suitable similarity transformations, and then solved by the help of Runge-Kutta with shooting technique. The numerical results for non-dimensional velocity and temperature are displayed with graphs. We also analyzed the physical quantities (friction factor and local Nusselt number) for various values of non-dimensional physical parameters mathematically, and they are presented through tables. We also compared the present results with existing literature under some limited case. At the end of our analysis, we noted that radiation amplifies temperature profiles of both stretching and shrinking sheet cases. But, compared to shrinking sheet stretching sheet gains higher values. Heat generation parameter enriches temperature profiles in both stretching and shrinking sheets; compared to stretching sheet, shrinking sheet gains higher values.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1047355
41 schema:name Comparative Study on MHD CARREAU Fluid Due to Stretching/Shrinking Surface in Suspension of Dust and Graphene Nanoparticles
42 schema:pagination 1-12
43 schema:productId N0ddedc84439a43048f555f2c63bb4739
44 N270d30381f684bb0837da2c7454ceb9d
45 N7c1083f806c24ac1a67de40830f18407
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113172761
47 https://doi.org/10.1007/s12668-019-00624-0
48 schema:sdDatePublished 2019-04-11T14:02
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0f22840020e74943930276b5934660b5
51 schema:url https://link.springer.com/10.1007%2Fs12668-019-00624-0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0ddedc84439a43048f555f2c63bb4739 schema:name readcube_id
56 schema:value 5948081a4f91d67e61db33e27423542546fabd13b545dca0f9626ce3875dacbb
57 rdf:type schema:PropertyValue
58 N0f22840020e74943930276b5934660b5 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N138c7bf36fbc497992354260638c14e9 rdf:first N79ec7a47d18f42a2a2c4c510149093d9
61 rdf:rest N477c8c9eb299407784a968c9c80dbdb6
62 N270d30381f684bb0837da2c7454ceb9d schema:name dimensions_id
63 schema:value pub.1113172761
64 rdf:type schema:PropertyValue
65 N477c8c9eb299407784a968c9c80dbdb6 rdf:first Nc74b3c274b9d4306bb6f908d68066257
66 rdf:rest rdf:nil
67 N487dde4e765e4ad5b8b976083a307436 schema:name Department of Mathematics School of Technology, GITAM Deemed To Be University, 562163, Bengaluru, Karnataka, India
68 rdf:type schema:Organization
69 N5e221d9b94a24432b07888a3dea41342 schema:name Department of Mathematics School of Technology, GITAM Deemed To Be University, 562163, Bengaluru, Karnataka, India
70 rdf:type schema:Organization
71 N79ec7a47d18f42a2a2c4c510149093d9 schema:affiliation https://www.grid.ac/institutes/grid.412140.2
72 schema:familyName Suresh Kumar Raju
73 schema:givenName S.
74 rdf:type schema:Person
75 N7c1083f806c24ac1a67de40830f18407 schema:name doi
76 schema:value 10.1007/s12668-019-00624-0
77 rdf:type schema:PropertyValue
78 Na48bee416e474b978bd801c0460d0f3e rdf:first Nb6860110a2f34562a3f29e242edd3963
79 rdf:rest Nd27a9fcd445b442c8e217b2b5de3ccdc
80 Nb6860110a2f34562a3f29e242edd3963 schema:affiliation N487dde4e765e4ad5b8b976083a307436
81 schema:familyName Santhosh
82 schema:givenName H. B.
83 rdf:type schema:Person
84 Nc74b3c274b9d4306bb6f908d68066257 schema:affiliation N5e221d9b94a24432b07888a3dea41342
85 schema:familyName Raju
86 schema:givenName C. S. K.
87 rdf:type schema:Person
88 Nd27a9fcd445b442c8e217b2b5de3ccdc rdf:first Nde27ea68c70843578d0559bdf8d2516c
89 rdf:rest N138c7bf36fbc497992354260638c14e9
90 Nde27ea68c70843578d0559bdf8d2516c schema:affiliation https://www.grid.ac/institutes/grid.460870.d
91 schema:familyName Mahesha
92 rdf:type schema:Person
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
97 schema:name Interdisciplinary Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1047355 schema:issn 2191-1630
100 2191-1649
101 schema:name BioNanoScience
102 rdf:type schema:Periodical
103 sg:pub.10.1007/s00161-016-0552-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198828
104 https://doi.org/10.1007/s00161-016-0552-8
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.aej.2014.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003601984
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.aej.2016.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029200997
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.asej.2014.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020030550
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.cnsns.2010.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010006673
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ijnonlinmec.2007.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014332914
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jestch.2014.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006009080
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jfranklin.2012.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025276183
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jmmm.2016.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681228
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.powtec.2017.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085457009
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.rinp.2018.04.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103659352
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.scient.2012.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036625710
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/.2016.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018550038
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.4858776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555083
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.4858778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555085
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.4929523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021589930
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.4932627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000947575
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0256-307x/28/8/084702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059058751
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1108/09615531011024039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052828648
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1115/1.4023959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149277
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1115/1.4039904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105686780
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1166/jon.2016.1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035927588
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1166/jon.2017.1408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090756955
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1166/jon.2017.1410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090756957
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1166/jon.2018.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091692058
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1166/jon.2018.1545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104432953
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1371/journal.pone.0111743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009219663
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1371/journal.pone.0157180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033546389
159 rdf:type schema:CreativeWork
160 https://doi.org/10.18869/acadpub.jafm.68.224.23961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084375547
161 rdf:type schema:CreativeWork
162 https://doi.org/10.5899/2015/cna-00228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073490138
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.412140.2 schema:alternateName King Faisal University
165 schema:name Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. 380, 31982, Hofuf, Al-Ahsa, Saudi Arabia
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.460870.d schema:alternateName University B.D.T College of Engineering
168 schema:name Department of Mathematics, University B.D.T. College of Engineering, 577004, Davangere, Karnataka, India
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...