Convective Heat Transfer in Drilling Nanofluid with Clay Nanoparticles: Applications in Water Cleaning Process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Ilyas Khan, A. Hussanan, Muhammad Saqib, Sharidan Shafie

ABSTRACT

Drilling fluids are significant in the drilling methods of oils and gases from rocks and land. To improve the performance of drilling fluid clay nanoparticles, play a vital rule. When clay nanoparticles are added to the drilling fluids, the thermal conductivity, viscosity levels, and boiling point of the fluid boost which provide resistant to high temperatures and control the fluid cost. Bearing in mind the substantial rule of clay nanoparticles in drilling fluid, this article demonstrates the convection heat transfer in drilling nanofluid. More exactly, clay nanoparticles are suspended in three different based fluids (water, kerosene, and engine oil). The mathematical expressions of Maxwell–Garnett and Brinkman for the effective thermophysical properties of clay nanofluids are utilized, whereas the flow phenomenon is governed by a set linear PDEs with physical initial and boundary conditions. The Laplace transform technique is applied to obtain exact analytical solutions for velocity and temperature profiles. The skin friction and Nusselt number are computed and presented in tabular forms. To insight the influence of various flow parameters, the obtained solutions are computed using Mathcad and plotted in different figures. The results show that the Nusselt number is significantly increased with increasing values of volume concentration. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12668-019-00623-1

DOI

http://dx.doi.org/10.1007/s12668-019-00623-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ton Duc Thang University", 
          "id": "https://www.grid.ac/institutes/grid.444812.f", 
          "name": [
            "Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Ilyas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universiti Malaysia Pahang", 
          "id": "https://www.grid.ac/institutes/grid.440438.f", 
          "name": [
            "Applied and Industrial Mathematics Research Group, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussanan", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.410877.d", 
          "name": [
            "Department of Mathematics Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Johar Bahru, 81310, Skudai, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saqib", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.410877.d", 
          "name": [
            "Department of Mathematics Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Johar Bahru, 81310, Skudai, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shafie", 
        "givenName": "Sharidan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002369646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-013-1989-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006227222", 
          "https://doi.org/10.1007/s11051-013-1989-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnucene.2013.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011855151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026834053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031173736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034191408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034979627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.05.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035319433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2009.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036162947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40430-016-0539-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036623356", 
          "https://doi.org/10.1007/s40430-016-0539-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2005.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038463921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039409558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jppr.2015.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043831524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083699673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084096650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11404-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226646", 
          "https://doi.org/10.1140/epjp/i2017-11404-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11404-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226646", 
          "https://doi.org/10.1140/epjp/i2017-11404-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-017-3468-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084758377", 
          "https://doi.org/10.1007/s11771-017-3468-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-017-3468-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084758377", 
          "https://doi.org/10.1007/s11771-017-3468-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2017.07.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090947786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2017-11809-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099924607", 
          "https://doi.org/10.1140/epjp/i2017-11809-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ra13188g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101124731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/mmms-08-2017-0094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101132811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11899-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105598595", 
          "https://doi.org/10.1140/epjp/i2018-11899-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11899-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105598595", 
          "https://doi.org/10.1140/epjp/i2018-11899-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2018-00097-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105732732", 
          "https://doi.org/10.1140/epjst/e2018-00097-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2018-00097-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105732732", 
          "https://doi.org/10.1140/epjst/e2018-00097-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107152552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107152552"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "Drilling fluids are significant in the drilling methods of oils and gases from rocks and land. To improve the performance of drilling fluid clay nanoparticles, play a vital rule. When clay nanoparticles are added to the drilling fluids, the thermal conductivity, viscosity levels, and boiling point of the fluid boost which provide resistant to high temperatures and control the fluid cost. Bearing in mind the substantial rule of clay nanoparticles in drilling fluid, this article demonstrates the convection heat transfer in drilling nanofluid. More exactly, clay nanoparticles are suspended in three different based fluids (water, kerosene, and engine oil). The mathematical expressions of Maxwell\u2013Garnett and Brinkman for the effective thermophysical properties of clay nanofluids are utilized, whereas the flow phenomenon is governed by a set linear PDEs with physical initial and boundary conditions. The Laplace transform technique is applied to obtain exact analytical solutions for velocity and temperature profiles. The skin friction and Nusselt number are computed and presented in tabular forms. To insight the influence of various flow parameters, the obtained solutions are computed using Mathcad and plotted in different figures. The results show that the Nusselt number is significantly increased with increasing values of volume concentration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12668-019-00623-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047355", 
        "issn": [
          "2191-1630", 
          "2191-1649"
        ], 
        "name": "BioNanoScience", 
        "type": "Periodical"
      }
    ], 
    "name": "Convective Heat Transfer in Drilling Nanofluid with Clay Nanoparticles: Applications in Water Cleaning Process", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "024fd85fb2a057a2c0295f3a88bde5583f7154fac4bb520d492ecfd53ce35afd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12668-019-00623-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12668-019-00623-1", 
      "https://app.dimensions.ai/details/publication/pub.1112871012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12668-019-00623-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00623-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00623-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00623-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12668-019-00623-1'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12668-019-00623-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N66a0f62d1d6f4235aec584ec85968acb
4 schema:citation sg:pub.10.1007/s11051-013-1989-3
5 sg:pub.10.1007/s11771-017-3468-y
6 sg:pub.10.1007/s40430-016-0539-1
7 sg:pub.10.1140/epjp/i2017-11404-2
8 sg:pub.10.1140/epjp/i2017-11809-9
9 sg:pub.10.1140/epjp/i2018-11899-9
10 sg:pub.10.1140/epjst/e2018-00097-5
11 https://doi.org/10.1016/j.chaos.2018.09.007
12 https://doi.org/10.1016/j.euromechflu.2009.05.006
13 https://doi.org/10.1016/j.icheatmasstransfer.2010.06.004
14 https://doi.org/10.1016/j.icheatmasstransfer.2013.05.001
15 https://doi.org/10.1016/j.icheatmasstransfer.2014.11.001
16 https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
17 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.115
18 https://doi.org/10.1016/j.ijhydene.2017.07.085
19 https://doi.org/10.1016/j.jmmm.2015.05.086
20 https://doi.org/10.1016/j.jppr.2015.05.002
21 https://doi.org/10.1016/j.jtice.2016.08.001
22 https://doi.org/10.1016/j.molliq.2015.05.031
23 https://doi.org/10.1016/j.molliq.2016.12.040
24 https://doi.org/10.1016/j.molliq.2017.03.009
25 https://doi.org/10.1016/j.pnucene.2013.03.009
26 https://doi.org/10.1016/j.rser.2005.01.010
27 https://doi.org/10.1016/s0017-9310(03)00156-x
28 https://doi.org/10.1039/c7ra13188g
29 https://doi.org/10.1063/1.1700493
30 https://doi.org/10.1108/mmms-08-2017-0094
31 https://doi.org/10.1115/1.2150834
32 schema:datePublished 2019-03-19
33 schema:datePublishedReg 2019-03-19
34 schema:description Drilling fluids are significant in the drilling methods of oils and gases from rocks and land. To improve the performance of drilling fluid clay nanoparticles, play a vital rule. When clay nanoparticles are added to the drilling fluids, the thermal conductivity, viscosity levels, and boiling point of the fluid boost which provide resistant to high temperatures and control the fluid cost. Bearing in mind the substantial rule of clay nanoparticles in drilling fluid, this article demonstrates the convection heat transfer in drilling nanofluid. More exactly, clay nanoparticles are suspended in three different based fluids (water, kerosene, and engine oil). The mathematical expressions of Maxwell–Garnett and Brinkman for the effective thermophysical properties of clay nanofluids are utilized, whereas the flow phenomenon is governed by a set linear PDEs with physical initial and boundary conditions. The Laplace transform technique is applied to obtain exact analytical solutions for velocity and temperature profiles. The skin friction and Nusselt number are computed and presented in tabular forms. To insight the influence of various flow parameters, the obtained solutions are computed using Mathcad and plotted in different figures. The results show that the Nusselt number is significantly increased with increasing values of volume concentration.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1047355
39 schema:name Convective Heat Transfer in Drilling Nanofluid with Clay Nanoparticles: Applications in Water Cleaning Process
40 schema:pagination 1-8
41 schema:productId N048503ee88634265b82555f289e13ebe
42 N25310f161443414180dd6374d9607d93
43 N2538e33b4cb547fa8e8d8f1b3830aaa2
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871012
45 https://doi.org/10.1007/s12668-019-00623-1
46 schema:sdDatePublished 2019-04-11T12:27
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N7113e2f222b948eab9a38b7e8dddd217
49 schema:url https://link.springer.com/10.1007%2Fs12668-019-00623-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N048503ee88634265b82555f289e13ebe schema:name doi
54 schema:value 10.1007/s12668-019-00623-1
55 rdf:type schema:PropertyValue
56 N0e4690f80b914d118b8d0805cc5e8413 rdf:first N2ecea465e0244550bdb6aedfa4471c5d
57 rdf:rest rdf:nil
58 N25310f161443414180dd6374d9607d93 schema:name readcube_id
59 schema:value 024fd85fb2a057a2c0295f3a88bde5583f7154fac4bb520d492ecfd53ce35afd
60 rdf:type schema:PropertyValue
61 N2538e33b4cb547fa8e8d8f1b3830aaa2 schema:name dimensions_id
62 schema:value pub.1112871012
63 rdf:type schema:PropertyValue
64 N2739997a60f34ccc813c2b2e31696256 rdf:first Nb5d006fe89b044e0a276ddcd087fdefa
65 rdf:rest N0e4690f80b914d118b8d0805cc5e8413
66 N2ecea465e0244550bdb6aedfa4471c5d schema:affiliation https://www.grid.ac/institutes/grid.410877.d
67 schema:familyName Shafie
68 schema:givenName Sharidan
69 rdf:type schema:Person
70 N66a0f62d1d6f4235aec584ec85968acb rdf:first Nf08d2950275a4d888f62b8949e2d5936
71 rdf:rest Nad323473b56a485ca76cb887eb1c82cb
72 N7113e2f222b948eab9a38b7e8dddd217 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nad323473b56a485ca76cb887eb1c82cb rdf:first Nfffa1dececd74984afc8452d6181c1be
75 rdf:rest N2739997a60f34ccc813c2b2e31696256
76 Nb5d006fe89b044e0a276ddcd087fdefa schema:affiliation https://www.grid.ac/institutes/grid.410877.d
77 schema:familyName Saqib
78 schema:givenName Muhammad
79 rdf:type schema:Person
80 Nf08d2950275a4d888f62b8949e2d5936 schema:affiliation https://www.grid.ac/institutes/grid.444812.f
81 schema:familyName Khan
82 schema:givenName Ilyas
83 rdf:type schema:Person
84 Nfffa1dececd74984afc8452d6181c1be schema:affiliation https://www.grid.ac/institutes/grid.440438.f
85 schema:familyName Hussanan
86 schema:givenName A.
87 rdf:type schema:Person
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
92 schema:name Interdisciplinary Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1047355 schema:issn 2191-1630
95 2191-1649
96 schema:name BioNanoScience
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s11051-013-1989-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006227222
99 https://doi.org/10.1007/s11051-013-1989-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11771-017-3468-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084758377
102 https://doi.org/10.1007/s11771-017-3468-y
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s40430-016-0539-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036623356
105 https://doi.org/10.1007/s40430-016-0539-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1140/epjp/i2017-11404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226646
108 https://doi.org/10.1140/epjp/i2017-11404-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1140/epjp/i2017-11809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099924607
111 https://doi.org/10.1140/epjp/i2017-11809-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1140/epjp/i2018-11899-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105598595
114 https://doi.org/10.1140/epjp/i2018-11899-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1140/epjst/e2018-00097-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105732732
117 https://doi.org/10.1140/epjst/e2018-00097-5
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.chaos.2018.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107152552
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.euromechflu.2009.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036162947
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.icheatmasstransfer.2010.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034979627
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.icheatmasstransfer.2013.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002369646
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.icheatmasstransfer.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005354411
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034191408
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699673
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijhydene.2017.07.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090947786
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jmmm.2015.05.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035319433
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jppr.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043831524
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jtice.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039409558
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.molliq.2015.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031173736
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.molliq.2016.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026834053
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.molliq.2017.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084096650
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.pnucene.2013.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011855151
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.rser.2005.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038463921
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0017-9310(03)00156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138982
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1039/c7ra13188g schema:sameAs https://app.dimensions.ai/details/publication/pub.1101124731
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.1700493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770936
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1108/mmms-08-2017-0094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101132811
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.410877.d schema:alternateName University of Technology Malaysia
162 schema:name Department of Mathematics Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Johar Bahru, 81310, Skudai, Malaysia
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.440438.f schema:alternateName Universiti Malaysia Pahang
165 schema:name Applied and Industrial Mathematics Research Group, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.444812.f schema:alternateName Ton Duc Thang University
168 schema:name Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...