Hybrid Nanogels Based on Chitosan Hydrochloride-Ascorbate Derived by Sol-Gel Biomimetic Synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

O. N. Malinkina, A. M. Sobolev, A. B. Shipovskaya

ABSTRACT

Nanostructured hydrogels obtained by the in situ sol-gel technology represent innovative systems for theranostic applications. Controlled self-assembly of charged macromolecular chains to form a polymer network due to specific non-covalent interactions is one of the methods to produce ionic biopolymer-based nanoscale gels. However, the structural lability and kinetic instability of such systems are significant disadvantages. In this study, we propose a preparation process of hybrid nanogels based on chitosan hydrochloride-ascorbate by biomimetic sol-gel synthesis at 20 and 80 °С using an organic-inorganic precursor. With the influence of the concentrations of the precursor, the binary chitosan salt, and a low-molecular-weight accelerator, the temperature of the sol-gel synthesis on the gelation time of our multicomponent chitosan-containing systems was evaluated. An increased concentration of the polymer salt, the introduction of an accelerator, and an increased temperature are shown to accelerate the gelation process. The refractive index (nD25) and pH of the silicon-chitosan-containing hydrogels were measured. A solid phase in these hydrogels was isolated by cold extraction combined with cryotreatment. Scanning electron microscopy shows that the solid phase of the hybrid nanogels is a matrix of agglomerated particles whose sizes increase with the chitosan concentration in the system. More... »

PAGES

157-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12668-016-0195-z

DOI

http://dx.doi.org/10.1007/s12668-016-0195-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052001445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saratov State University", 
          "id": "https://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Education and Research Institute of Nanostructures and Biosystems Department of Macromolecular Compounds, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation", 
            "Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malinkina", 
        "givenName": "O. N.", 
        "id": "sg:person.010661317075.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661317075.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State University", 
          "id": "https://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobolev", 
        "givenName": "A. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State University", 
          "id": "https://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Education and Research Institute of Nanostructures and Biosystems Department of Macromolecular Compounds, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation", 
            "Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shipovskaya", 
        "givenName": "A. B.", 
        "id": "sg:person.016474137722.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474137722.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/jphp.12262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002568847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11094-009-0246-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006402365", 
          "https://doi.org/10.1007/s11094-009-0246-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/1568554053148816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11172-014-0578-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010274224", 
          "https://doi.org/10.1007/s11172-014-0578-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mencom.2014.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018652055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-004-2956-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019335016", 
          "https://doi.org/10.1007/s00216-004-2956-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7000149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025502332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7000149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025502332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2006.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026434192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200800921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028122297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2014.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042785981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbic.200700764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047831350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am4051266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055144795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm200677d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055414319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm200677d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055414319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0356912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0356912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146285"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "Nanostructured hydrogels obtained by the in situ sol-gel technology represent innovative systems for theranostic applications. Controlled self-assembly of charged macromolecular chains to form a polymer network due to specific non-covalent interactions is one of the methods to produce ionic biopolymer-based nanoscale gels. However, the structural lability and kinetic instability of such systems are significant disadvantages. In this study, we propose a preparation process of hybrid nanogels based on chitosan hydrochloride-ascorbate by biomimetic sol-gel synthesis at 20 and 80 \u00b0\u0421 using an organic-inorganic precursor. With the influence of the concentrations of the precursor, the binary chitosan salt, and a low-molecular-weight accelerator, the temperature of the sol-gel synthesis on the gelation time of our multicomponent chitosan-containing systems was evaluated. An increased concentration of the polymer salt, the introduction of an accelerator, and an increased temperature are shown to accelerate the gelation process. The refractive index (nD25) and pH of the silicon-chitosan-containing hydrogels were measured. A solid phase in these hydrogels was isolated by cold extraction combined with cryotreatment. Scanning electron microscopy shows that the solid phase of the hybrid nanogels is a matrix of agglomerated particles whose sizes increase with the chitosan concentration in the system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12668-016-0195-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047355", 
        "issn": [
          "2191-1630", 
          "2191-1649"
        ], 
        "name": "BioNanoScience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Hybrid Nanogels Based on Chitosan Hydrochloride-Ascorbate Derived by Sol-Gel Biomimetic Synthesis", 
    "pagination": "157-161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7b3d8109a29817e528fcdf95c019253e27dd72eefe9c83b61ce62be30b882b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12668-016-0195-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052001445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12668-016-0195-z", 
      "https://app.dimensions.ai/details/publication/pub.1052001445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12668-016-0195-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12668-016-0195-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12668-016-0195-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12668-016-0195-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12668-016-0195-z'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12668-016-0195-z schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Ne4dd03c373f64c00a30ba249c0a0c6b8
4 schema:citation sg:pub.10.1007/s00216-004-2956-8
5 sg:pub.10.1007/s11094-009-0246-7
6 sg:pub.10.1007/s11172-014-0578-7
7 https://doi.org/10.1002/adfm.200800921
8 https://doi.org/10.1002/cbic.200700764
9 https://doi.org/10.1016/j.jconrel.2014.05.009
10 https://doi.org/10.1016/j.mencom.2014.06.003
11 https://doi.org/10.1016/j.progpolymsci.2006.06.001
12 https://doi.org/10.1021/am4051266
13 https://doi.org/10.1021/ar7000149
14 https://doi.org/10.1021/cm200677d
15 https://doi.org/10.1021/la0356912
16 https://doi.org/10.1111/jphp.12262
17 https://doi.org/10.1163/1568554053148816
18 schema:datePublished 2016-06
19 schema:datePublishedReg 2016-06-01
20 schema:description Nanostructured hydrogels obtained by the in situ sol-gel technology represent innovative systems for theranostic applications. Controlled self-assembly of charged macromolecular chains to form a polymer network due to specific non-covalent interactions is one of the methods to produce ionic biopolymer-based nanoscale gels. However, the structural lability and kinetic instability of such systems are significant disadvantages. In this study, we propose a preparation process of hybrid nanogels based on chitosan hydrochloride-ascorbate by biomimetic sol-gel synthesis at 20 and 80 °С using an organic-inorganic precursor. With the influence of the concentrations of the precursor, the binary chitosan salt, and a low-molecular-weight accelerator, the temperature of the sol-gel synthesis on the gelation time of our multicomponent chitosan-containing systems was evaluated. An increased concentration of the polymer salt, the introduction of an accelerator, and an increased temperature are shown to accelerate the gelation process. The refractive index (nD25) and pH of the silicon-chitosan-containing hydrogels were measured. A solid phase in these hydrogels was isolated by cold extraction combined with cryotreatment. Scanning electron microscopy shows that the solid phase of the hybrid nanogels is a matrix of agglomerated particles whose sizes increase with the chitosan concentration in the system.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N5620a43b43f64ae6ba5162b902657b28
25 N7d7e4254ff85428ba93614a07674cdcb
26 sg:journal.1047355
27 schema:name Hybrid Nanogels Based on Chitosan Hydrochloride-Ascorbate Derived by Sol-Gel Biomimetic Synthesis
28 schema:pagination 157-161
29 schema:productId N4750ced0b461408896d82ddc35435f98
30 N8904794e87e2436cbdd9dd182da76025
31 Nf35748c2d1644038a6dddaf552d91596
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052001445
33 https://doi.org/10.1007/s12668-016-0195-z
34 schema:sdDatePublished 2019-04-11T00:19
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5276101f8adc462a9fe75027b6db55cf
37 schema:url http://link.springer.com/10.1007%2Fs12668-016-0195-z
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N2ec9512e0feb4efc91db25feee99a24c rdf:first sg:person.016474137722.10
42 rdf:rest rdf:nil
43 N4750ced0b461408896d82ddc35435f98 schema:name doi
44 schema:value 10.1007/s12668-016-0195-z
45 rdf:type schema:PropertyValue
46 N5276101f8adc462a9fe75027b6db55cf schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N5620a43b43f64ae6ba5162b902657b28 schema:volumeNumber 6
49 rdf:type schema:PublicationVolume
50 N7d7e4254ff85428ba93614a07674cdcb schema:issueNumber 2
51 rdf:type schema:PublicationIssue
52 N8904794e87e2436cbdd9dd182da76025 schema:name readcube_id
53 schema:value f7b3d8109a29817e528fcdf95c019253e27dd72eefe9c83b61ce62be30b882b3
54 rdf:type schema:PropertyValue
55 Nb3a976044e874340b15be75cee0842dd rdf:first Nc97c6ff6f6be43e49bf86b55b6440ce3
56 rdf:rest N2ec9512e0feb4efc91db25feee99a24c
57 Nc97c6ff6f6be43e49bf86b55b6440ce3 schema:affiliation https://www.grid.ac/institutes/grid.446088.6
58 schema:familyName Sobolev
59 schema:givenName A. M.
60 rdf:type schema:Person
61 Ne4dd03c373f64c00a30ba249c0a0c6b8 rdf:first sg:person.010661317075.01
62 rdf:rest Nb3a976044e874340b15be75cee0842dd
63 Nf35748c2d1644038a6dddaf552d91596 schema:name dimensions_id
64 schema:value pub.1052001445
65 rdf:type schema:PropertyValue
66 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
67 schema:name Chemical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
70 schema:name Macromolecular and Materials Chemistry
71 rdf:type schema:DefinedTerm
72 sg:journal.1047355 schema:issn 2191-1630
73 2191-1649
74 schema:name BioNanoScience
75 rdf:type schema:Periodical
76 sg:person.010661317075.01 schema:affiliation https://www.grid.ac/institutes/grid.446088.6
77 schema:familyName Malinkina
78 schema:givenName O. N.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661317075.01
80 rdf:type schema:Person
81 sg:person.016474137722.10 schema:affiliation https://www.grid.ac/institutes/grid.446088.6
82 schema:familyName Shipovskaya
83 schema:givenName A. B.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474137722.10
85 rdf:type schema:Person
86 sg:pub.10.1007/s00216-004-2956-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019335016
87 https://doi.org/10.1007/s00216-004-2956-8
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s11094-009-0246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006402365
90 https://doi.org/10.1007/s11094-009-0246-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11172-014-0578-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010274224
93 https://doi.org/10.1007/s11172-014-0578-7
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/adfm.200800921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122297
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/cbic.200700764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047831350
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jconrel.2014.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042785981
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.mencom.2014.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652055
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.progpolymsci.2006.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026434192
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/am4051266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144795
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/ar7000149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025502332
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/cm200677d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055414319
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1021/la0356912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056146285
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/jphp.12262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002568847
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1163/1568554053148816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008871295
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.446088.6 schema:alternateName Saratov State University
118 schema:name Education and Research Institute of Nanostructures and Biosystems Department of Macromolecular Compounds, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation
119 Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russian Federation
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...