Effect of Sintering Parameters on the Microstructure and Mechanical Properties of Medical Mg–3Mn and Mg–3Zn Prepared by Powder Metallurgy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

Xia Luo, Chao Fang, Fanjin Yao, Hong Zhao, Shuai Yan

ABSTRACT

Magnesium alloys as the lightest commercial structural materials have wide application prospects such as in the medical application. However, it is difficult to sinter Mg alloys dense when powder metallurgy was used because of the oxide layers covered by the surface of Mg powders. To solve this problem, Mg–3Zn and Mg–3Mn alloys were sintered under vacuum system in this study. Mg–3Zn and Mg–3Mn compactions were sintered at different temperatures for 2 h based on their phase diagrams in the vacuum furnace. The results show that when sintered at 560 °C, the highest microhardness and relative density of Mg–3Zn alloy are 74.3 HV and 98.4%, respectively. For Mg–3Mn alloy, its highest corresponding value is 46.08 HV and 86.6%, respectively, when sintered at 600 °C. Mg–3Mn is more difficult to be sintered because it is denser than Mg–3Zn. The microstructure of sintered Mg–3Zn and Mg–3Mn mainly is composed of α-Mg and MgZn2, and α-Mn, α-Mg and MnO2, respectively. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12666-019-01651-x

DOI

http://dx.doi.org/10.1007/s12666-019-01651-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113107999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Xia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Chao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Fanjin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Hong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Shuai", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-008-0150-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008989763", 
          "https://doi.org/10.1007/s11837-008-0150-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2008.02.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011561315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2015.02.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017126203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.07.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023750733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018695927717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026697570", 
          "https://doi.org/10.1023/a:1018695927717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-4328(02)00013-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029360568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11669-005-0110-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039288872", 
          "https://doi.org/10.1007/s11669-005-0110-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2006.02.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046967966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2009.09.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051159173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1875-5372(17)30035-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084717560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.06.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086292599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "Magnesium alloys as the lightest commercial structural materials have wide application prospects such as in the medical application. However, it is difficult to sinter Mg alloys dense when powder metallurgy was used because of the oxide layers covered by the surface of Mg powders. To solve this problem, Mg\u20133Zn and Mg\u20133Mn alloys were sintered under vacuum system in this study. Mg\u20133Zn and Mg\u20133Mn compactions were sintered at different temperatures for 2 h based on their phase diagrams in the vacuum furnace. The results show that when sintered at 560 \u00b0C, the highest microhardness and relative density of Mg\u20133Zn alloy are 74.3 HV and 98.4%, respectively. For Mg\u20133Mn alloy, its highest corresponding value is 46.08 HV and 86.6%, respectively, when sintered at 600 \u00b0C. Mg\u20133Mn is more difficult to be sintered because it is denser than Mg\u20133Zn. The microstructure of sintered Mg\u20133Zn and Mg\u20133Mn mainly is composed of \u03b1-Mg and MgZn2, and \u03b1-Mn, \u03b1-Mg and MnO2, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12666-019-01651-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136517", 
        "issn": [
          "0972-2815", 
          "0975-1645"
        ], 
        "name": "Transactions of the Indian Institute of Metals", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of Sintering Parameters on the Microstructure and Mechanical Properties of Medical Mg\u20133Mn and Mg\u20133Zn Prepared by Powder Metallurgy", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e29e61cfcb877d67879b91af8af306a32fef94315991ce7c2f8be2a9abd6ea2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12666-019-01651-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113107999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12666-019-01651-x", 
      "https://app.dimensions.ai/details/publication/pub.1113107999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12666-019-01651-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01651-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01651-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01651-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01651-x'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      35 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12666-019-01651-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4dc35a64f2334a579937678e9539ecb8
4 schema:citation sg:pub.10.1007/s11669-005-0110-8
5 sg:pub.10.1007/s11837-008-0150-8
6 sg:pub.10.1023/a:1018695927717
7 https://doi.org/10.1016/j.biomaterials.2009.09.065
8 https://doi.org/10.1016/j.jallcom.2006.02.060
9 https://doi.org/10.1016/j.jallcom.2016.07.120
10 https://doi.org/10.1016/j.jallcom.2017.06.199
11 https://doi.org/10.1016/j.matlet.2008.02.048
12 https://doi.org/10.1016/j.msea.2015.02.073
13 https://doi.org/10.1016/s0968-4328(02)00013-6
14 https://doi.org/10.1016/s1875-5372(17)30035-8
15 schema:datePublished 2019-03-29
16 schema:datePublishedReg 2019-03-29
17 schema:description Magnesium alloys as the lightest commercial structural materials have wide application prospects such as in the medical application. However, it is difficult to sinter Mg alloys dense when powder metallurgy was used because of the oxide layers covered by the surface of Mg powders. To solve this problem, Mg–3Zn and Mg–3Mn alloys were sintered under vacuum system in this study. Mg–3Zn and Mg–3Mn compactions were sintered at different temperatures for 2 h based on their phase diagrams in the vacuum furnace. The results show that when sintered at 560 °C, the highest microhardness and relative density of Mg–3Zn alloy are 74.3 HV and 98.4%, respectively. For Mg–3Mn alloy, its highest corresponding value is 46.08 HV and 86.6%, respectively, when sintered at 600 °C. Mg–3Mn is more difficult to be sintered because it is denser than Mg–3Zn. The microstructure of sintered Mg–3Zn and Mg–3Mn mainly is composed of α-Mg and MgZn2, and α-Mn, α-Mg and MnO2, respectively.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf sg:journal.1136517
22 schema:name Effect of Sintering Parameters on the Microstructure and Mechanical Properties of Medical Mg–3Mn and Mg–3Zn Prepared by Powder Metallurgy
23 schema:pagination 1-8
24 schema:productId N42d21255f7584d88b0a12755b5aa7a6e
25 N4e61d1b313594766b4b802f090669dd9
26 Nf6677ad9fc744cc4aa650bbfae240d92
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113107999
28 https://doi.org/10.1007/s12666-019-01651-x
29 schema:sdDatePublished 2019-04-11T13:25
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N3c134074f8de42078f0fbb9a707dc3b6
32 schema:url https://link.springer.com/10.1007%2Fs12666-019-01651-x
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N00718d072bf24e3aaa2ed1412f5ad1a7 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
37 schema:familyName Zhao
38 schema:givenName Hong
39 rdf:type schema:Person
40 N20e77feedc524c2085537da57eb18376 rdf:first N00718d072bf24e3aaa2ed1412f5ad1a7
41 rdf:rest Ncb96ef7acc6048e69df7599e4f44f284
42 N37ed87d09e9c4efcb9bdd87a4964c07b schema:affiliation https://www.grid.ac/institutes/grid.437806.e
43 schema:familyName Fang
44 schema:givenName Chao
45 rdf:type schema:Person
46 N3ad32b60d3f94819ac361925fcbad76d schema:affiliation https://www.grid.ac/institutes/grid.437806.e
47 schema:familyName Yan
48 schema:givenName Shuai
49 rdf:type schema:Person
50 N3c134074f8de42078f0fbb9a707dc3b6 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N42d21255f7584d88b0a12755b5aa7a6e schema:name dimensions_id
53 schema:value pub.1113107999
54 rdf:type schema:PropertyValue
55 N4dc35a64f2334a579937678e9539ecb8 rdf:first N56dccd57908141a0979f4c1814d71aed
56 rdf:rest Na3ed388637f943939d6381b93129e9d6
57 N4e61d1b313594766b4b802f090669dd9 schema:name doi
58 schema:value 10.1007/s12666-019-01651-x
59 rdf:type schema:PropertyValue
60 N56dccd57908141a0979f4c1814d71aed schema:affiliation https://www.grid.ac/institutes/grid.437806.e
61 schema:familyName Luo
62 schema:givenName Xia
63 rdf:type schema:Person
64 N96103a23b6a34fa0ad2afe6b1c747adf schema:affiliation https://www.grid.ac/institutes/grid.437806.e
65 schema:familyName Yao
66 schema:givenName Fanjin
67 rdf:type schema:Person
68 Na3ed388637f943939d6381b93129e9d6 rdf:first N37ed87d09e9c4efcb9bdd87a4964c07b
69 rdf:rest Nc79a424702134599bbe31132357fc9a7
70 Nc79a424702134599bbe31132357fc9a7 rdf:first N96103a23b6a34fa0ad2afe6b1c747adf
71 rdf:rest N20e77feedc524c2085537da57eb18376
72 Ncb96ef7acc6048e69df7599e4f44f284 rdf:first N3ad32b60d3f94819ac361925fcbad76d
73 rdf:rest rdf:nil
74 Nf6677ad9fc744cc4aa650bbfae240d92 schema:name readcube_id
75 schema:value 9e29e61cfcb877d67879b91af8af306a32fef94315991ce7c2f8be2a9abd6ea2
76 rdf:type schema:PropertyValue
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
81 schema:name Materials Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1136517 schema:issn 0972-2815
84 0975-1645
85 schema:name Transactions of the Indian Institute of Metals
86 rdf:type schema:Periodical
87 sg:pub.10.1007/s11669-005-0110-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039288872
88 https://doi.org/10.1007/s11669-005-0110-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11837-008-0150-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008989763
91 https://doi.org/10.1007/s11837-008-0150-8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/a:1018695927717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026697570
94 https://doi.org/10.1023/a:1018695927717
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.biomaterials.2009.09.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051159173
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jallcom.2006.02.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046967966
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jallcom.2016.07.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750733
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jallcom.2017.06.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086292599
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.matlet.2008.02.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011561315
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.msea.2015.02.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017126203
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0968-4328(02)00013-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360568
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s1875-5372(17)30035-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084717560
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.437806.e schema:alternateName Southwest Petroleum University
113 schema:name School of Materials Science and Engineering, Southwest Petroleum University, 610500, Chengdu, People’s Republic of China
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...