Effect of Mischmetal Addition on Physical and Mechanical Properties of Al–Ni–Zr Melt-Spun Ribbons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hamid Reza Asgari Bidhendi, Reza Gholamipour, Farzad Shahri

ABSTRACT

In this work, the effect of mischmetal addition on the microstructural, physical and mechanical properties of rapidly solidified (Al90Ni8Zr2)(100−x)MMx (x = 0–6) alloys has been studied. In this respect, various as-spun ribbons were prepared by the single-roller melt-spinning process at a quenching wheel speed of 43 m/s. The results obtained showed that mischmetal had a strong effect on the control of amorphicity of the alloy during melt-spinning process. TEM and XRD results revealed the presence of two phases, nanocrystalline α-Al and amorphous phase of Al90Ni8Zr2 alloy compared with those of MM-added samples with an amorphous structure. This is believed to be related to the increase in glass-forming ability due to the addition of mischmetals to the alloy. The average crystallite size obtained for MM-free sample was in the range of 30 nm as confirmed by XRD and TEM data. Phase separation and formation of second phase were observed for 6 at.% MM-added sample in the as-spun state. DSC results revealed that glass transition and crystallization temperatures increased with the increase in mischmetal in Al90Ni8Zr2 system. Further, it was seen that the maximum microhardness value was obtained for the 4 at.% MM-added samples (4.72 GPa). More... »

PAGES

993-999

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12666-019-01561-y

DOI

http://dx.doi.org/10.1007/s12666-019-01561-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112219608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iranian Research Organization for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.459609.7", 
          "name": [
            "Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asgari Bidhendi", 
        "givenName": "Hamid Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iranian Research Organization for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.459609.7", 
          "name": [
            "Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gholamipour", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iranian Research Organization for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.459609.7", 
          "name": [
            "Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahri", 
        "givenName": "Farzad", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2009.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.06.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005145619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-796x(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007528716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-796x(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007528716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.43.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011829072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00597-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00597-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2006.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014172573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2008.05.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014937051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2012.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016853735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.02.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/wjnse.2012.23020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018011940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020636324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2008.11.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022439981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2004.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025480125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.46.2817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.46.2817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2011.08.1151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031349360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2004.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033257923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839308240933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034930498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)00656-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035477848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2013.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040313864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-577x(01)00364-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041112121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6425(98)00005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045366438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00258-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050049394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2013.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051896841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052169882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2007.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052686362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/26/6/066402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059056787"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this work, the effect of mischmetal addition on the microstructural, physical and mechanical properties of rapidly solidified (Al90Ni8Zr2)(100\u2212x)MMx (x = 0\u20136) alloys has been studied. In this respect, various as-spun ribbons were prepared by the single-roller melt-spinning process at a quenching wheel speed of 43 m/s. The results obtained showed that mischmetal had a strong effect on the control of amorphicity of the alloy during melt-spinning process. TEM and XRD results revealed the presence of two phases, nanocrystalline \u03b1-Al and amorphous phase of Al90Ni8Zr2 alloy compared with those of MM-added samples with an amorphous structure. This is believed to be related to the increase in glass-forming ability due to the addition of mischmetals to the alloy. The average crystallite size obtained for MM-free sample was in the range of 30 nm as confirmed by XRD and TEM data. Phase separation and formation of second phase were observed for 6 at.% MM-added sample in the as-spun state. DSC results revealed that glass transition and crystallization temperatures increased with the increase in mischmetal in Al90Ni8Zr2 system. Further, it was seen that the maximum microhardness value was obtained for the 4 at.% MM-added samples (4.72 GPa).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12666-019-01561-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136517", 
        "issn": [
          "0972-2815", 
          "0975-1645"
        ], 
        "name": "Transactions of the Indian Institute of Metals", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "Effect of Mischmetal Addition on Physical and Mechanical Properties of Al\u2013Ni\u2013Zr Melt-Spun Ribbons", 
    "pagination": "993-999", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cac930d09082e4475302737b5608a5ec8bd3cabf37f206d7fe394de30372c8cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12666-019-01561-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112219608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12666-019-01561-y", 
      "https://app.dimensions.ai/details/publication/pub.1112219608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12666-019-01561-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01561-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01561-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01561-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12666-019-01561-y'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12666-019-01561-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb373fd78b2f94547b078ce31e721e133
4 schema:citation https://doi.org/10.1016/0927-796x(94)90022-1
5 https://doi.org/10.1016/j.actamat.2004.07.005
6 https://doi.org/10.1016/j.jallcom.2004.01.017
7 https://doi.org/10.1016/j.jallcom.2007.06.059
8 https://doi.org/10.1016/j.jallcom.2008.05.086
9 https://doi.org/10.1016/j.jallcom.2015.02.217
10 https://doi.org/10.1016/j.jallcom.2016.06.272
11 https://doi.org/10.1016/j.jnoncrysol.2006.06.022
12 https://doi.org/10.1016/j.jnoncrysol.2013.12.027
13 https://doi.org/10.1016/j.matchar.2012.01.002
14 https://doi.org/10.1016/j.msea.2003.10.189
15 https://doi.org/10.1016/j.msea.2003.10.212
16 https://doi.org/10.1016/j.msea.2004.04.016
17 https://doi.org/10.1016/j.msea.2008.11.043
18 https://doi.org/10.1016/j.msea.2014.03.012
19 https://doi.org/10.1016/j.pmatsci.2013.04.002
20 https://doi.org/10.1016/j.proeng.2011.08.1151
21 https://doi.org/10.1016/j.scriptamat.2009.04.035
22 https://doi.org/10.1016/s0079-6425(98)00005-x
23 https://doi.org/10.1016/s0167-577x(01)00364-0
24 https://doi.org/10.1016/s0921-5093(00)00656-0
25 https://doi.org/10.1016/s0921-5093(03)00597-5
26 https://doi.org/10.1016/s1359-6454(02)00258-6
27 https://doi.org/10.1080/09500839308240933
28 https://doi.org/10.1088/0256-307x/26/6/066402
29 https://doi.org/10.2320/matertrans.43.2006
30 https://doi.org/10.2320/matertrans.46.2817
31 https://doi.org/10.4236/wjnse.2012.23020
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description In this work, the effect of mischmetal addition on the microstructural, physical and mechanical properties of rapidly solidified (Al90Ni8Zr2)(100−x)MMx (x = 0–6) alloys has been studied. In this respect, various as-spun ribbons were prepared by the single-roller melt-spinning process at a quenching wheel speed of 43 m/s. The results obtained showed that mischmetal had a strong effect on the control of amorphicity of the alloy during melt-spinning process. TEM and XRD results revealed the presence of two phases, nanocrystalline α-Al and amorphous phase of Al90Ni8Zr2 alloy compared with those of MM-added samples with an amorphous structure. This is believed to be related to the increase in glass-forming ability due to the addition of mischmetals to the alloy. The average crystallite size obtained for MM-free sample was in the range of 30 nm as confirmed by XRD and TEM data. Phase separation and formation of second phase were observed for 6 at.% MM-added sample in the as-spun state. DSC results revealed that glass transition and crystallization temperatures increased with the increase in mischmetal in Al90Ni8Zr2 system. Further, it was seen that the maximum microhardness value was obtained for the 4 at.% MM-added samples (4.72 GPa).
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Na397ca3b9add4e9a95b3aebeeeceb268
39 Ncaff797300fb4275bc6f2529e570143a
40 sg:journal.1136517
41 schema:name Effect of Mischmetal Addition on Physical and Mechanical Properties of Al–Ni–Zr Melt-Spun Ribbons
42 schema:pagination 993-999
43 schema:productId N6a863f076b6647cf9639b8e9eb7f47e3
44 N8c48d90ae24147d49d9c49d0d089cfbc
45 N9a6d1560fccd458380f11181a8f0a86d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112219608
47 https://doi.org/10.1007/s12666-019-01561-y
48 schema:sdDatePublished 2019-04-11T12:41
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N14e3671d4be04b349141018daa1a3980
51 schema:url https://link.springer.com/10.1007%2Fs12666-019-01561-y
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N14e3671d4be04b349141018daa1a3980 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N2b0874d7029c42f6a6e7344dc5a75dbc schema:affiliation https://www.grid.ac/institutes/grid.459609.7
58 schema:familyName Gholamipour
59 schema:givenName Reza
60 rdf:type schema:Person
61 N53750e5d55c04c68894e05fcb0523535 schema:affiliation https://www.grid.ac/institutes/grid.459609.7
62 schema:familyName Asgari Bidhendi
63 schema:givenName Hamid Reza
64 rdf:type schema:Person
65 N6a863f076b6647cf9639b8e9eb7f47e3 schema:name readcube_id
66 schema:value cac930d09082e4475302737b5608a5ec8bd3cabf37f206d7fe394de30372c8cd
67 rdf:type schema:PropertyValue
68 N8c48d90ae24147d49d9c49d0d089cfbc schema:name doi
69 schema:value 10.1007/s12666-019-01561-y
70 rdf:type schema:PropertyValue
71 N9a6d1560fccd458380f11181a8f0a86d schema:name dimensions_id
72 schema:value pub.1112219608
73 rdf:type schema:PropertyValue
74 Na397ca3b9add4e9a95b3aebeeeceb268 schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 Nafe7a71709bd444790be6d251717ff64 schema:affiliation https://www.grid.ac/institutes/grid.459609.7
77 schema:familyName Shahri
78 schema:givenName Farzad
79 rdf:type schema:Person
80 Nb373fd78b2f94547b078ce31e721e133 rdf:first N53750e5d55c04c68894e05fcb0523535
81 rdf:rest Nf83f3c8f08ff43c7a28b38b49ada16c6
82 Ncaff797300fb4275bc6f2529e570143a schema:volumeNumber 72
83 rdf:type schema:PublicationVolume
84 Ncb764d025a854ef09ff13afbb370cac6 rdf:first Nafe7a71709bd444790be6d251717ff64
85 rdf:rest rdf:nil
86 Nf83f3c8f08ff43c7a28b38b49ada16c6 rdf:first N2b0874d7029c42f6a6e7344dc5a75dbc
87 rdf:rest Ncb764d025a854ef09ff13afbb370cac6
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136517 schema:issn 0972-2815
95 0975-1645
96 schema:name Transactions of the Indian Institute of Metals
97 rdf:type schema:Periodical
98 https://doi.org/10.1016/0927-796x(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007528716
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.actamat.2004.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334994
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jallcom.2004.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025480125
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jallcom.2007.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052686362
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jallcom.2008.05.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014937051
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jallcom.2015.02.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379618
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jallcom.2016.06.272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005145619
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jnoncrysol.2006.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014172573
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jnoncrysol.2013.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051896841
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.matchar.2012.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016853735
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.msea.2003.10.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349360
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.msea.2003.10.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052169882
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.msea.2004.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033257923
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.msea.2008.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022439981
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.msea.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020636324
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.pmatsci.2013.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040313864
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.proeng.2011.08.1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030456140
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.scriptamat.2009.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936764
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0079-6425(98)00005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045366438
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0167-577x(01)00364-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041112121
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0921-5093(00)00656-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035477848
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0921-5093(03)00597-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011945382
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s1359-6454(02)00258-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050049394
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/09500839308240933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034930498
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0256-307x/26/6/066402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059056787
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2320/matertrans.43.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011829072
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2320/matertrans.46.2817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503504
151 rdf:type schema:CreativeWork
152 https://doi.org/10.4236/wjnse.2012.23020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018011940
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.459609.7 schema:alternateName Iranian Research Organization for Science and Technology
155 schema:name Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...